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Predicting defect formation energies in crystal structures is crucial for advancing materials science
and has significant implications for quantum computing. This study enhances the predictive capa-
bilities of Crystal Graph Convolutional Neural Networks (CGCNN) by integrating transfer learning
techniques. Initially, we compared the standard CGCNN model with a Defect Graph Neural Net-
work (dGNN) specifically adjusted for defect formation energies. We then leveraged a pretrained
model on pristine crystal formation energies and applied it to a smaller dataset of defect formation
energies. We introduced new pooling functions, including dropout-styled, average, and max pool-
ing, to enhance the model’s performance. Additionally, an optimizer was developed to fine-tune
command line parameters, ensuring optimal results. Future work aims to explore the potential of
an advisor-expert model structure, where multiple sub-models (advisors) specializing in different
target quantities contribute to the final prediction of the primary (expert) model. The integration
of a supercell representation in our model is also planned, representing the crystal lattice as a large
graph that includes both pristine and defect structures. This research has applications in quan-
tum computing, where accurate prediction of defect formation energies can lead to the development
of more efficient quantum processors and devices by optimizing the materials used in their con-
struction. These advancements are expected to significantly improve the accuracy and efficiency of
defect formation energy predictions, contributing to progress in both materials science and quantum
technology.
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I. INTRODUCTION

The search for different crystals has always been an
important question in the realm of scientific discovery
due to their useful properties, and one particular area
of importance is the study of defect crystal structures,
which contain various impurities such as oxygen vacan-
cies or substitutions. The advancement of such materi-
als is crucial, as they can be used for electrodes [1], as
transparent electric conductors [2], and even as qubits
[3]. In the past, density functional theory (DFT), aka
calculations based on theoretical values of material be-
havior, has been the most common method used to find
such materials, which rely on expensive and slow com-
putations and can take on the scale of months or years
to discover 100 new materials [4].

Recent years have seen the rise of machine learning to
predict such properties, using specialized graph neural
networks. This is usually done by manually setting vec-
tors for materials and picking what one thinks are the
most important properties [5], which needs adjusting
every time a new property is predicted. Additionally,
machine learning models tend to be less accurate than
DFT calculations on average for defect material prop-
erties, which is likely due to the lack of data regarding
materials with defects, and much more data for pristine

materials [6]. Transfer learning is a solution: a model
can be trained on a large dataset of pristine materials
before being fine-tuned on a much smaller database of
defect material properties, producing much improved
performance.

In this paper, we perform transfer learning on a state-
of-the-art defect Graph Neural Network (dGNN) [7] [8].
We do this by pretraining a model on pristine crystal
formation energy, and fine-tuning on defect formation
energy. We also implemented an optimizer and different
cross validation techniques that were not in the original
paper, which allowed us to properly verify the accuracy
of our model, and showed that leave-two-out was the
best optimization method out of the ones we used. We
compare the model with last year’s transfer learning
techniques, which were applied to a different model, and
in the future we plan to further refine our techniques to
ensure even better results.

II. METHODS

The databases used for this project included a
database collected from the materials project for pris-
tine crystal formation energy [9] in which the model was
pretrained on, and a database of vacancy formation en-
thalpies [10] for the model to fine-tune on.



Our primary model, the Defect Graph Neural Net-
work (dGNN), represents each crystal structure as a
graph where nodes correspond to atoms and edges to
bonds, with nodes characterized by feature vectors con-
taining information such as atomic number, and edges
characterized by features such as bond length and bond
type. To leverage transfer learning, we pretrained the
dGNN on a large dataset of pristine crystal formation
energies, using this pretrained model as a foundation
for subsequent training on the smaller dataset of defect
formation energies.

We experimented with different pooling functions to
determine their impact on performance, including base-
line dGNN pooling (selecting the parameter vector of
the atom to be defected), dropout-styled pooling (ran-
domly selecting a node from the graph and forwarding
its vector to the fully connected layers), average pooling
(taking the element-wise average of all atom vectors in
the graph), and max pooling (taking the element-wise
maximum of all atom vectors). Each pooling function
was integrated into the dGNN, and their performances
were compared.

Additionally, we developed an optimizer to fine-
tune command line parameters for running the model.
We implemented random optimization, which gener-
ates random values corresponding to each parameter,
creating a Python command that combines these op-
tions, running the Python command, which will run
the model, and evaluating the resulting model’s perfor-
mance.

To assess the model’s performance, we generated fig-
ures illustrating performance improvement over differ-
ent data sizes, comparison of baseline dGNN results
with those of the transfer learning applied dGNN model,
and performance comparison of different pooling func-
tions.

III. RESULTS AND DISCUSSIONS

We tested how well transfer learning worked with De-
fect Graph Neural Networks (dGNNs) to predict defect
formation energies in crystal structures. We compared
the performance of dGNN models trained from scratch
with those enhanced by transfer learning across differ-
ent dataset sizes (10%, 40%, and 100% of the available
data).

Figure [1| shows the Mean Absolute Error (MAE) on
the test set for AGNN models trained from scratch and
those using transfer learning at different training sizes.
For the smallest dataset size (10%), the scratch model
had an MAE of 2.055, while the transfer learning model
had a higher MAE of 2.502. As the dataset size in-
creased, the scratch models continued to do better than
the transfer learning models. At 40% dataset size, the
scratch model’s MAE was 0.499, compared to the trans-

fer model’s MAE of 0.529. For the full dataset (100%),
the scratch model achieved an MAE of 0.493, while the
transfer learning model had an MAE of 0.512.
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Figure 1. Comparison of Mean Absolute Error (MAE) vs.
Training Size for Scratch and Transfer Learning models. The
plot shows that models trained from scratch consistently
performed better than those using transfer learning across
all dataset sizes. The MAE for the scratch model decreases
significantly as the training size increases, while the transfer
learning model shows a higher MAE across all training sizes,
indicating the ineffectiveness of transfer learning in this con-
text.

The underperformance of the transfer learning mod-
els could be due to several reasons. One possibility is
that the pretrained model on pristine crystal formation
energies did not capture the specific details and varia-
tions present in defect structures, leading to poor fine-
tuning on the defect dataset. Additionally, the transfer
learning process might have introduced biases from the
pretrained model that were not aligned with the char-
acteristics of the defect data. Other common reasons
for the failure of transfer learning include overfitting to
the smaller defect dataset during fine-tuning, which can
happen if the pretrained model is too complex and does
not generalize well to the defect data. The difference be-
tween the pristine and defect datasets might have also
contributed to the ineffectiveness of the transfer learn-
ing approach.

We experimented with different pooling functions
(baseline dGNN pooling, dropout-styled pooling, av-
erage pooling, and max pooling) during the pretrain-
ing phase on pristine crystal formation energies. Fig-
ure 2] shows the performance comparison of these pool-
ing functions. Among these, the average pooling func-
tion consistently delivered the best results, highlighting
its effectiveness in aggregating node features for energy
predictions.

The results suggest that the transfer learning ap-
proach, using a model pretrained on pristine crystal
formation energies, may not be directly applicable to
defect datasets without further refinement. Future work
will explore the implementation of advisor-expert model
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Figure 2. Performance comparison of different pooling func-
tions (baseline dGNN pooling, dropout-styled pooling, aver-
age pooling, and max pooling) during the pretraining phase
for Scratch models. The average pooling function consis-
tently delivered the best results, showing its superior ability
to aggregate node features effectively for predicting energy
formations. This suggests that average pooling captures
more relevant information from the graph structures com-
pared to other pooling methods.

structures and the use of supercell representations to
better capture the complexities of defect structures,
aiming to refine these predictions and improve overall
accuracy. Additionally, strategies to prevent overfitting
and better align pretraining tasks with fine-tuning goals
will be considered to enhance the effectiveness of trans-
fer learning in this context.

To achieve better results with transfer learning in fu-
ture studies, several strategies can be considered. Pre-
training the model on a dataset that is more closely
related to defect structures, rather than pristine crys-
tal formation energies, can help the model learn features
that are more relevant to the target task. Applying reg-
ularization techniques such as dropout or early stopping
during the fine-tuning phase can prevent overfitting and
improve generalization to the defect dataset. Increas-
ing the size and diversity of the defect dataset through
data augmentation techniques can help the model learn
a broader range of defect characteristics and improve its
predictive accuracy. Experimenting with different fine-
tuning strategies, such as gradually unfreezing layers,
can better adapt the pretrained model to the defect
dataset without losing important pretrained features.
Future research can enhance the performance of trans-
fer learning models for defect formation energy predic-
tions, contributing to advancements in materials science
and quantum computing applications.

IV. CONCLUSIONS

In this study, we explored the effectiveness of transfer
learning in enhancing the predictive capabilities of De-
fect Graph Neural Networks (dGNNs) for defect forma-
tion energy predictions in crystal structures. By com-
paring models trained from scratch with those lever-
aging transfer learning across different dataset sizes,
we found that the scratch models consistently outper-
formed the transfer learning models. This underperfor-
mance suggests that the pretrained model on pristine
crystal formation energies did not effectively capture
the nuances of defect structures, possibly due to over-
fitting, biases, and differences between the pristine and
defect datasets.

Despite the setbacks with transfer learning, our ex-
periments with various pooling functions during the
pretraining phase indicated that average pooling con-
sistently provided the best results. This highlights the
importance of effective feature aggregation in improving
model performance.

Looking forward, our future work will focus on re-
fining the transfer learning approach. This includes
pretraining on datasets more closely related to defect
structures, applying regularization techniques to pre-
vent overfitting, and experimenting with advanced fine-
tuning strategies. Additionally, we aim to explore hy-
brid models and incorporate adversarial training to en-
hance robustness and generalization capabilities.

By addressing these challenges and exploring new
strategies, we hope to improve the performance of trans-
fer learning models for defect formation energy pre-
dictions, thereby advancing materials science and con-
tributing to the development of more efficient quantum
computing applications.

V. FUTURE WORKS

Additionally, we are working to add more optimiza-
tion methods to further select the best hyperparame-
ters for model performance. In particular, we plan to
expand our collection of optimizers to include genetic
optimization and simulated annealing. Genetic opti-
mization will be implemented by randomizing an initial
vector of parameters, then creating new vectors chang-
ing half the values of the parameters in order to simu-
late a mutation, and then choosing the best performing
one out of those. Simulated annealing chooses initial
parameters and then continuously alters them slightly
in a random direction, choosing to keep the new pa-
rameters based on a probability function involving the
models’ performance as well as the time elapsed. This
will be favorable because unlike gradient descent, where
the loss graph might get stuck at a local minimum, this



allows the model to be flexible with moving towards a
global minimum, or the absolute best loss.

Additionally, we plan to add a linear layer to the
model that does a linear transformation to change the
sizes of parameters so that different pooling functions
or pretrain/train combinations with different parame-
ters can still be used together. Additionally, we plan to
implement an Advised Experts approach, where other
properties of a material, such as band gap, will be taken
into account to train the defect formation energy of the
material, giving us a more holistic view of factors that
influence a property.

Future work will explore the implementation of
advisor-expert model structures and the use of super-
cell representations to better capture the complexities
of defect structures, aiming to refine these predictions
and improve overall accuracy. Additionally, strategies
to prevent overfitting and better align pretraining tasks
with fine-tuning goals will be considered to enhance the
effectiveness of transfer learning in this context.

In future work on this project, several approaches
can be pursued to enhance the effectiveness of trans-
fer learning. One approach is to pretrain the model on
datasets that are more closely aligned with defect struc-
tures, rather than on pristine crystal formation energies,
ensuring the features learned are more applicable to the
target task. Another strategy is to employ regulariza-
tion techniques like dropout or early stopping during

fine-tuning, which can mitigate overfitting and enhance
the model’s ability to generalize to new data. Fine-
tuning strategies could also be refined; for instance,
gradually unfreezing layers of the pretrained model may
help retain valuable pretrained features while adapting
to new data. By pursuing these strategies, future re-
search can significantly advance the field, contributing
to both materials science and quantum computing ap-
plications.
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