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ABSTRACT
We aim to enhance Crystal Graph Convolutional Neural Network (CGCNN) models for predicting defect formation energies in crystal
structures. Our modifications focus on improving accuracy, reducing overfitting, and enhancing interpretability. These advancements
support efficient material property predictions, and reduce the need for Density Functional Theorem calculations.
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PREVIOUS WORK
CGCNN excels at predicting properties for
pristine crystals. Adapting it to defect struc-
tures requires adjustments due to limited
defect data. We employ transfer learning,
leveraging the pristine crystal database to
enhance defect energy predictions.

Figure 1: A crystal graph-based approach ini-
tially trained on pristine structures. Transfer
learning refines the model for defect formation
energies.

Figure 2: Previous work did not improve results
with transfer learning. Best outcomes were with
fully connected layers and adaptive moment es-
timation. (Red text = fine-tuning)

POTENTIAL IMPROVEMENTS
Advised Experts:
Experts specialize in various crystal struc-
tures, combining insights for precise defect
energy predictions.

Transfer Learning:
Pre-train on a large crystal structure dataset
for pristine crystal formation energy and
fine-tune on a smaller defect formation
energy dataset for enhanced accuracy.

Cross Validation Functions:
Cross-validation reduces the high variance
that results from the noise present in small
datasets, improving model reliability.

Pooling Functions:
Different pooling functions can be exper-
imented with. The dGNN uses a defect
specific pooling function with node-level
pooling that singles out the defect site.
Other pooling functions that can be applied
are dropout-style pooling and max pooling.

dGNN Implementation:
Using the same improvements used in the
dGNN model for predicting defect forma-
tion energies such as improved dataset size,
vector features, and gaussian filters.

DGNN MODEL
The defect Graph Neural Network (dGNN),
enhances prediction accuracy of defect for-
mation energies. The dGNN incorporates
elements from the original CGCNN model,
optimized for defect-specific predictions.

Figure 3: Workflow of the dGNN model, embed-
ding specific features into the ML model to pre-
dict defect formation energy. It utilizes features
from both the pristine crystal structure and spe-
cific crystal defects.

Key differences between the original
CGCNN model and the newer dGNN
model include:

• Pooling operation (node level)
• Vector features (oxidation states)
• Radial basis set expansion
• Larger database (≈ 1500 vs. ≈ 800)

RESULTS AND CONCLUSIONS
Cross-validation has improved CGCNN models’ performance in predicting defect formation energies by increasing robustness and reducing
overfitting. Transfer Learning did not see improved results while using dGNN, but average pooling yields the best results for pretraining
the model on pristine crystal formation energy.

Figure 4: MAE of the test set at each
training epoch for various models.
This uses the k-fold cross-validation
for each model. This test was done
on the CGCNN, and the best per-
forming model included an adaptive
moment estimation model coupled
with transfer learning.

Figure 5: Comparison of cross-
validation methods on a single
model. The most effective method is
the Leave-Two-Out cross-validation
method as it achieves the least
amount of variance. Only a small
percentage of Leave-Two-Out and
Leave-One-Out CV were performed
due to large computing times.

Figure 6: A comparison of different
pooling functions used for pretrain-
ing pristine crystal formation energy
while using dGNN. The best results
yielded from using the average pool-
ing function, and fine-tuning using
the dGNN pooling.

Figure 7: Comparison of using trans-
fer learning and using a model with
no transfer learning to predict de-
fect formation energies with differ-
ent levels of data availability. Infer-
ence results are plotted for 3 different
percentages of data availability (10,
40, 100) and the from scratch model
consistently performs better.
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