GPU Implementation of Image Recognition Neural
Network Architectures

Justin Garrigus

University of North Texas
National Science Foundation AI REU
Denton, Texas, United States
JustinGarrigus@my.unt.edu

Abstract—The neural network architectures VGG-16,
LeNet, and Alexnet are each implemented in Python and C to
compare relative performance when using a CPU-styled and
GPU-styled approach to computation. This program uses a
modular implementation, making it easy to analyze
characteristics like performance bottlenecks or data
organization in specific layers or using the GPU simulator
GPGPU-Sim. The network is internalized as a list of individual
layers, each with an optional list of weights and parameters
used to modify input vectors to achieve an output. The C
network is loaded from a custom file format generated by the
Python program, which is built on the Keras API interface for
Tensorflow. The final program accepts a jpg image as input,
along with a network file and flag for computing on the CPU or
GPU, and provides a list of predictions and percentages on
what the network interprets the image to be, along with the
time it took for each layer to complete their computation.

Keywords—neural network, GPU, VGG-16, LeNet, Alexnet,
GPGPU-Sim.

1. INTRODUCTION

For the 2022 summer National Science Foundation Al
REU, we worked to learn about neural networks and how
they relate to Graphics Processing Units. To these ends, we
developed a software that pulls the weights from trained
models built in Python’s Keras library, and uses those
weights to predict the classification of an input image in the
Cuda extension for C. Our final program was modular and
easily scalable, allowing a wide array of models to be
implemented; we will use the VGG-16, LeNet, and Alexnet
architectures as demonstrations of this. This paper
demonstrates our findings over this 10-week period, as well
as the measured results of our completed program.

A. Neural Networks and Image Recognition

A neural network is classification of program which is
capable of learning how to accomplish a goal. It yields a
matrix of data when given a matrix as input, and uses an
elegant training algorithm to coerce a set of weights to
modify inputs to become the intended outputs. Network
“models” usually consist of a linear sequence of layers
which range in style and purpose. Our program focuses on
image-recognition, and networks attempt to predict what an
input image consists of. Three networks are currently
implemented, with more types being easy to implement; for
prototyping purposes, we used Keras to implement our own
versions of these networks.

Bora Bulut

Boston University
National Science Foundation AI REU
Boston, Massachusetts, United States

bbulut@bu.edu
TRl | e o | P oy]
ololElalof@alojo@aleloololo@: ,l,l,
NN O IN N Fe (N [N |NJ[o|N|N (NN NEololnlale
midd HH HHH HAH BHH HHHE
|npUIoc§ccxoooécocxo owgggomput
OUEUUgUUOEU()UgU UE

Figure 1: VGG-16 layers.

The main network architecture implemented was
VGG-16 (Figure 1). This architecture was chosen first
because Keras archived pre-trained weights for it (meaning
we would not need to train the model ourselves), but it also
offered an elegant solution to the image-recognition
problem. It is built in an organized, well-structured way, and
the variety of layers contain a breadth of
computationally-heavy components we could focus on
improving in the next step. Four layer types are introduced:
Conv2D, MaxPooling, Flatten, and Dense.

This model accepts full-sized images as an input and
assigns it a series of guesses based on 1000 possible labels
based on the ImageNet dataset. Inputs are preprocessed by
extracting their RGB components in the range [0, 255],
subtracting the mean from each component, and switching
the B and R fields.

Output

Conv2D

Conv2D

Convz2D
Flatten J

MaxPooling

=2
=
©
o
o
3
=

Figure 2: LeNet layers.

LeNet was the second architecture implemented due to
the similarities it shared with VGG-16 (Figure 2). It does not
introduce any new layers, and is much smaller in
comparison. For this reason, it accepts 28x28 black and
white images of handwritten digits from the MNIST digit
dataset. Inputs are preprocessed by subtracting the mean
from each color and dividing the result by the standard
deviation of the set; therefore, the new mean of the input
would be 0, and the new standard deviation would be 1. The
inclusion of this model was meant to show the fluidity of the
program, proving it can implement layers in any order and
still yield a credible result.

J

ConvzD l

Conv2D
Flatten
Dense
Dense

—
Output

Conv2ZD]

BatchNormalization

0
o
>
c
0
(0]

BatchNormalization
MaxPooling
BatchNormalization
Conv2D
BatchNormalization
MaxPooling

MaxPooling

Figure 3: Alexnet layers.

The final architecture implemented was Alexnet, chosen
due to its importance in the image-recognition field (Figure
3). While VGG-16 was considered to be a direct
improvement of Alexnet on the basis of organization and
accuracy, we still chose to incorporate Alexnet due to its
complexity. It introduces a new layer named
BatchNormalization, and many model hyperparameters have
additional adjustments. Inputs are preprocessed in a similar
manner to LeNet by subtracting the mean and dividing by
the standard deviation of the set. This model was not
included pre-trained in Keras, which required us manually
train it on our own dataset; we chose to use the CIFAR-10
image dataset which contains 32x32 pixel images spread
across ten classes out of storage concerns.

B. GPU, Cuda, and GPGPU-Sim

Besides basic implementation of network architectures,
we also sought to explore improvements to be made in terms
of GPU programming. The GPU is similar to the CPU in
many ways, but the largest difference lies in the number of
threads that can be simultaneously executed. Typically, a
standard CPU-centric program is limited by the number of
cores present on the hardware; for instance, a dual-core CPU
typically can only run two sets of instructions at a time.
More threads can be created (the Windows operating system
has several thousand running at any moment), but the CPU
accomplishes this by switching its “focus” between each
thread. To summarize, a CPU can only simultaneously
execute a small number of instructions at any moment.

Alternatively, the GPU specializes in running a much
larger amount of threads, each executing their own
instructions at the same time. The GPU is specifically
optimized for executing the same instruction on different
sets of data giving it the name SIMD: single-instruction,
multiple data. The GPU is capable of running different
instructions per-thread, but performance is optimal if each
thread is synchronized. This concept is immensely useful,
for example, in matrix multiplication.

K N N
X =
M Matrix A Matrix C M
Matrix B K

Figure 4: Matrix multiplication between Matrix A (with dimensions MxK)
and Matrix B (with dimensions KxN) resulting in Matrix C (with
dimensions MxN).

Matrix multiplication is a relatively repetitive process,
featuring a dot-product between a row and a column, where:

C =A B (1)

This equation is applied for each cell in the C matrix. For
instance, if matrix C is 500x500 cells large, then 25000 dot

product operations are performed. The CPU would
accomplish this task by executing one operation at a time,
using several for-loops to go through each cell in the
resulting matrix and choosing rows and columns from the
inputs to calculate dot products of. As such, the time
complexity of a matrix is O(M * N * K).

Since GPUs can quickly dispatch a large number of
threads, a different approach can be taken to solving the
problem: instead of looping through each cell in the final
matrix, we can create one thread per cell, and have each
concurrently calculate a single dot product operation.
Assuming that there are enough threads available, then the
new time complexity is O(K) since a single loop is required
to calculate the dot product of a cell. This is a tremendous
improvement; increasing the M or N dimensions of the input
matrices has no bearing on the execution time since the time
it takes to start threads is constant regardless of the number
of threads started. While this is only a simple example of the
benefit of GPU programming, there are many other diverse
circumstances they can be applied.

While the usage of GPUs are not limited to matrices, an
additional optimization can be applied in regards to matrix
multiplication specifically. Ceratin Nvidia GPUs come
equipped with a device called a Tensorcore, which are
optimized to calculate the result of the matrix operation:

D=AXB+C)

There are several constraints that must be applied (the
dimensions of the input matrices must be a multiple of 16,
and each matrix must consist of 16-bit floating point values),
but the result is staggering performance far exceeding that of
the CPU or GPU methods discussed previously.

Cuda offers an API for programming GPUs. It is built on
top of C, and can be executed from a native C program with
the help of some compiler tricks. Additionally, a separate
program named GPGPU-Sim is used to simulate GPUs or to
profile different GPU architectures to identify bottlenecks,
cache hit/miss rates, execution time, and more when used
with a Cuda program. These tools were all used to develop
the program and ensure it performed the best it could.

II. MOTIVATION AND OBJECTIVES

Neural networks feature a paradigm similar to what
GPUs favor; layers typically consist of a repetitive loop of
instructions being applied across a set of data. For this
reason, we wanted to research how much of a benefit could
be gained by shifting a CPU-centric image-prediction
algorithm over to the GPU.

There were several other goals we had in mind when
planning for this project. We wanted our program to be
general enough to work for different types of network
architectures to improve its benefit; because of our modular
approach to implementation (where networks are
internalized as a collection of independent layers), it is very
easy to execute and profile a unique network so long as the
model is sequential and the layer type has an
implementation.

Additionally, since the program is split into clear
easy-to-read subsections, parsing important data using
GPGPU-Sim is much easier than it would be with other
existing neural network related libraries like cuBLAS or

cuDNN. The simple yet straightforward approach to
program organization offers an easy way to identify areas to
improve, apply changes, and profile the specific sections
they apply. This is something that would be difficult to do
otherwise.

Finally, we chose to develop the majority of the program
in C as opposed to strictly in Python so we can compare
cross-language performance as well. Keras takes a very
high-level approach to deep-learning, intentionally
obscuring the intricacies of network design and reducing
complex algorithms down to simple invokable functions.
This idea would be beneficial to most programmers wanting
to quickly create and prototype network designs, but we
wanted to take a deeper approach to Al research, diving into
the instruction-level details on layer implementation. To
these ends, our approach took a much more comprehensive
look at creating fast, space-efficient programs for GPUs.

I11. METHODOLOGY

Before we began planning for the project, we created a
preliminary program which tested the potential performance
benefits of utilizing the GPU. The program featured an
artificial neural network (in other words, a network featuring
only Dense layers) of varying size, and compared how
quickly a CPU would complete the feedforward operation
versus a GPU doing the same operation. The results of this
(discussed in the results section) were promising, and
prompted us to pursue the project idea further.

The next step was to create the Python backend. Our
goal was to use Cuda for C, but we wanted to avoid training
a network from scratch. This prompted us to use Keras since
it had pre-trained models available for us to use, so we
decided on extracting a model, saving it to a custom file
format, and later on loading that file from C. We created this
model save/load function first, but in the process determined
that we should treat Python like a “sandbox” for testing
implementations for specific layers. Since Python allows us
to quickly prototype code, generalizing unimportant sections
and catching bugs easier with a stack trace instead of C’s
core dump, it was logical to first create an example of our
program in Python before doing a line-for-line translation
over to C. Our approach was to incrementally replace
Keras’s version of the layers with our own version,
piece-by-piece until the entire program consisted entirely of
our own code with minimal usage of Tensorflow functions
attached, and then doing the same from Python to C. After
different designs and attempts, we were able to implement
the four initial layers from VGG-16 (Figure 1):

e Conv2D: this layer operates by sliding a “kernel”
consisting of scalar values across a subset of the
input matrix, calculating the dot product of the
scalars and input and placing the result in the
output slide. This layer type introduced the biggest
bottleneck to our program; some instances feature
billions of floating-point operations (FLOPs).

® MaxPooling: these feature to coalesce and
“summarize” the convolutional output by passing
forward the maximum values to the next layer.
These serve mainly to halve the size of the input
matrix (for instance, layer 2 represents a 224x224
pixel image, while layer 4 is 112x112 pixels in
dimensions).

e Flatten: this operation simply transforms the matrix
input into a single-dimensional vector for the sake
of the next layer type.

® Dense: this layer consists of a classic matrix
multiplication and addition. It multiplies the input
(a one-dimensional vector) against a matrix of
weights, and adds another matrix of weights to the
result. Dense layers also introduce a considerable
bottleneck, as the matrix multiplication occurs
between matrices thousands of elements wide.

In our custom implementation of each layer, we needed
to be sure an equivalent C implementation was possible: this
required we remove all references to code that would be
difficult to translate. The only libraries we allowed ourselves
to use in this section were Numpy for their usage of the
ndarray data structure; this had a close comparison to C
arrays and Python did not have an easily-accessible array
format naturally. Although, some complications were later
introduced from this decision, which will be discussed later.

Due to several factors, the Python implementation
tended to execute very slowly. This is largely due to the
design of the language itself, introducing hurdles that make
programming easier but slow the execution considerably.
One method we utilized to prototype the program quicker
was a “scaled probability” approach: we considered how
many operations we could do in a given time period, and
consistently performed that many operations at a maximum.
For instance, if we could perform 10 operations/second,
while wanting to spend no more than 3 seconds calculating
each layer, and the first convolutional layer had 80
operations, then the resulting probability was:

p = (rate * time)/operations
p = (10 * 3)/80 = 0.375

This example probability would mean that we would
only calculate 37.5% of the total operations in order to
compute the layer in 3 seconds. Every time we encounter an
operation, we would poll a random value and compare it
with the probability; if the random value is less than the
probability, we would go ahead with calculation; if the value
was greater than the probability, we would use the actual
value Keras generated for the layer. In this case, this would
mean 37.5% of the output is a result of our own original
calculations, while the other 62.5% of the output consists of
values we know are already correct. This time-saving
measure proved to be extremely effective at prototyping the
Python implementation quickly: due to the nature of neural
networks, small changes in values lead to potentially big
effects, meaning we would immediately notice if our
attempt at coding a layer was incorrect.

After the Python version of these layers were finished,
we created an identical program in C which loads an
example image, loads the weights of the pre-trained
network, constructs the model from the weights, supplied
the input image to the first layer, performed each layer’s
respective operation passing the output of one layer to the
input of the next, and parsed which labels the network
predicted the input image to represent.

As mentioned earlier, we used some functions from
Numpy in order to implement the Python version of the
program; these functions would each need to be
re-implemented in C. The biggest accommodation to be

made was in storage: Numpy’s ndarray structure was
different from C in its ability to create arrays of arbitrary
dimension, which could be emulated through the usage of
unique functions we created for this project. As a result, we
have a C implementation of the ndarray which contains
methods for padding multidimensional arrays, copying,
indexing, and creating iterators.

After the C program yielded a sufficient degree of
accuracy for an image prediction, we moved on to
re-implementing certain layers in Cuda. The
performance-critical sections were the Dense and Conv2D
layers: optimizing Dense layers would involve creating a
fast matrix multiplication algorithm which we already
discussed previously, but Conv2D would involve a new, but
similar, GPU-based algorithm. The idea was to have one
thread run per cell in the output array; a cell is yielded by
finding the dot product of the scalar “kernel” with a
subsection of the inputs, so this operation would run several
thousand times all at once with the GPU as opposed to
sequentially as it would be on the CPU. Although, a new
problem introduced itself at this stage: since the GPU works
best when each thread is executing the same instruction, it
became important to pad the inputs to the convolutional
layer to prevent the usage of divergence-inducing
conditionals.

In the GPU, threads can only be dispatched in groups of
at most 1024; a group of threads in this context is called a
block. Also, each block run must have the same number of
threads in it. Since each thread should calculate exactly one
output value, then the number of threads should exactly
equal the number of outputs, which in our case meant it
must be aligned with a width of 1024. Although, most of the
layers failed to meet this restriction, which required either
the usage of conditionals in the GPU function (have each
thread check if their position was out of bounds), or by
padding the input. Padding was seen as a more reasonable
option performance-wise: if the output size of a
convolutional layer was, for instance, 4000, we would
simply round the number up to the nearest multiple of 1024,
which in this case is 4096. Those extra 96 threads would
therefore successfully operate on data, but the data would be
unused in any following step in the GPU.

At this point, the GPU version of VGG-16 was
completed. The rest of the project was spent repeating the
same steps for LeNet and Alexnet; since these architectures
were both structurally very similar to VGG-16, it took
considerably less time to do, and demonstrated the
flexibility of the program in its ability to reuse code.
Although, Alexnet introduced a final unique layer type
which needed to be added:

® BatchNormalization: this layer essentially performs
the preprocessing step again but makes the mean
and standard deviation be weighted values instead
of 0 and 1 respectively. It finds the mean and
standard deviation of the inputs but it adjusts them
by parameterized weights. Then, the layer subtracts
each value by the adjusted mean, and divides the
result by the adjusted standard deviation. The result
of this operation is that the output layer has a mean
and standard deviation equal to the values the layer
specified during training.

e Dropout: this layer type was only included in the
Python version. The original Alexnet paper

specified the usage of a Dropout layer to help in the
training step; it works by disabling random sets of
inputs in order to make the training a bit faster, and
it does not have any operation during normal
inference. Since we did not focus on training for
the C version of the project, this layer was omitted.

Finally, once each network was completed and tested, it
was time to implement the improved matrix multiplication
with Tensorcores. This would introduce a small
improvement to only the Dense layer, since it was the only
layer which explicitly contained matrix multiplication, but it
was an improvement nonetheless. Nvidia released an
example test file, cudaTensorCoreGemm.cu, which
implemented a matrix-multiplication algorithm using
Tensorcores, so our first job was to strip that example of its
unimportant parts and to wrap it in an easy-to-invoke
function. The biggest concern was that of copying: in order
to simplify invocation of these functions, it was necessary to
assume data had a consistent location. GPU and CPU data
are separated, and transfer between the GPU and CPU takes
a considerable amount of time, so this causes a problem that
would need to be addressed in the future. In the final
program, gigabytes of weights are transferred before each
invocation of the matrix multiply function which stalls the
image prediction by a huge amount, but the matrix multiply
operation itself does see a slight performance improvement
as expected.

V. REsuLTS

It was initially mentioned that before the program began,
we ran a series of preliminary tests to profile potential
performance gains in using GPUs versus CPUs in regards to
neural networks.

a5 Increasing width large length

CPU
GPU |/
30+ 1
/
/
/
25
/
)
2
2| /
Q
@
l” .
£157 X 5000
F Y 16.067
10T
5r -
g X 5000
- Y 0.578
0 — I — — L —
0 1000 2000 3000 4000 5000 6000 7000

Width

Figure 5: A graph displaying the performance of a network with many
dense layers. The execution time on the CPU at different widths is in blue,
contrasted with the execution time on the GPU in red.

Figure 5 displays how GPUs are much better suited than
CPUs for networks with a large number of nodes. The
highlighted point says that a network with many layers in it,
with each layer containing 5000 nodes, completes a
feedforward operation in 16.067 seconds on the CPU and
0.578 seconds on the GPU. As the number of nodes in any
given layer increases, the computation time increases
exponentially for the CPU while it increases very slowly
linearly for the GPU. These results were very promising for
the rest of the project; it suggested that a mass-thread
method of problem solving was much more effective at

solving repetitive problems than a multidimensional for-loop
based approach. We would refer to this example more in the
future when we developed our network design.

After programming the project and verifying that the
predictions of the input images matched the expected results
from Keras, we executed each version of the project at each
stage of completion and compared their execution time in
generating a set of predictions. These versions are made of
the Python version, whose implementation was an original
recreation of Keras; the C version, which was a line-for-line
recreation of the Python version; the Cuda version, which
replaced the Dense and Conv2D functions with
GPU-performant versions; and the Tensorcore version,
which replaced the Dense GPU function with an even better
GPU-performant version. The program was timed based on
the layer operation itself, and the timing does not factor in
any setup or cleanup routines that immediately precede or
follow the layer operation. For instance, it was mentioned
previously that Tensorcores require allocating several
gigabytes of memory before invoking any function: for our
purposes, we did not include this allocation time and only
included the time of the matrix multiplication itself because
an ideal program would be designed to avoid any dynamic
allocation at prediction-time. The following table
demonstrates the times retrieved from each program
execution:

VGG-16 Prediction Time (s) Speedup
Python (CPU) 12633.41 —

C (CPU) 1328.21 89.49
Cuda (GPU) 2.68 99.98
Tensorcore (GPU) 2.45 99.98

Table 1: Performance comparison between different implementations of
VGG-16.

LeNet Prediction Time (s) Decrease (%)
Python (CPU) 0.56 —

C (CPU) 0.35 37.50

Cuda (GPU) 0.30 47.43
Tensorcore (GPU) 0.33 41.07

Table 2: Performance comparison between different implementations of
LeNet.

Alexnet Prediction Time (s) Decrease (%)
Python (CPU) 1371.79 —

C (CPU) 150.89 89.00

Cuda (GPU) 1.05 99.92
Tensorcore (GPU) 1.01 99.93

Table 3: Performance comparison between different implementations of
Alexnet.

As expected, the GPU versions vastly outperform the
CPU variants to a substantial degree. Although, it is
important to note the timing differences between the C and

Python version as well: remember that the only difference
between those versions was their programming language, as
the code itself was a near line-for-line recreation. This
demonstrates that Python is not the best language to use in
performance-critical situations, and that a well-designed C
program will almost certainly out-perform an equivalent
Python program. Although, even more impressive is the
time difference between C and Cuda. An image prediction
would take 20 minutes on a device that used only the CPU
while taking about two seconds with the GPU enabled.
Finally, there is a tiny performance gain in using the
Tensorcores, which may still be optimized further by
recognizing areas for improvement in the Nvidia sample
file. It’s important to note how LeNet doesn’t see that large
of a benefit from GPU usage: there is a small overhead to
starting processes on the GPU and utilizing Tensorcores, and
the small size of LeNet may not justify its usage.
Regardless, when it comes to networks that are large in size,
GPUs offer a decisive advantage.

V. CONCLUSION

The GPU is clearly the better option to use when it
comes to processing a lot of data in a repetitive way. This
harkens back to the reason GPUs were made in the first
place: to quickly solve equations related to graphics and
mapping textures to the screen. Hardware designers were
presented with a problem involving a large number of inputs
and needed to present a solution that would uniformly apply
code across large volumes of data, and the GPU was the best
solution they came up with. For our purposes, we haven’t
used the GPU for graphics-processing at all since our
implementation of neural networks is applied in a much
more general sense, but the same principles apply. The
program we created can be used in many more diverse areas
than just image recognition, so long as it can consist of the
layers we’ve presented so far. Additionally, layers are
represented as a collection of weights and a pointer to a
function; as long as new layers follow this format as well,
then the usability of the program can expand even further.
Finally, the readability of the code and the design of the
program would make it very easy to do further research into
areas of improvements for neural networks: for instance, if
we wanted to analyze how performance would improve if
the size of the data was modified or if the alignment of the
data was changed, then the program coupled with
GPGPU-Sim would be a great fit for diagnostics.

VI. FURTHER STUDIES

There are several areas we will be improving the project
in the future. Firstly, the program in its current state copies a
significant amount of data between the GPU and the CPU
during a single image prediction. Ideally, the only data
transfer that should occur should happen at the start of the
program (to load the weights to the GPU), at the start of
image prediction (to load the image to the GPU), and at the
end of image prediction (to transfer the output of the
network back to the CPU). This would take a lot more
organizational effort to achieve, but it is certainly possible if
the time is put in.

Alongside this, another improvement to be made would
be in the diversity of models. The three architectures shown
off all follow a sequential format, where data travels in a
straight line from layer to layer. Some network architectures
like GoogLeNet do not follow this format, and thus would

be impossible to represent in the current program. To these
ends, it would be beneficial to extend the capabilities of the
program to support these new networks so that new
bottlenecks can be identified in these layer designs using
GPU simulators.

Finally, Tensorcores are another aspect of the project that
can be improved. We so far explored how Dense layers can
easily utilize matrix multiplication, but the Conv2D layers
can also be visualized as a matrix multiplication itself, so
long as the data is formatted correctly. Convolutional layers
currently cost the most amount of time in the program,
meaning even a small optimization could improve the
execution time drastically, but more testing should be done
to verify this.

