
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

Neural network models typically consist of a 

large volume of data transformed with a 

repetitive set of instructions, which sometimes 

results in poor performance on serial devices 

like CPUs. Alternatively, GPUs are specialized 

to dispatch many threads which can each 

process a block of data simultaneously. We

compared the performance of three image 

recognition architectures when implemented 

on the CPU versus the GPU and created a 

modular program which can be used in 

conjunction with GPU simulators to profile 

different low-level aspects of the execution. 

Our results demonstrated a tremendous 

improvement in speed when networks are 

implemented on the GPU compared with the 

CPU. 

Department of Computer Science

Justin Garrigus, Bora Bulut, Hui Zhao

GPU Implementation of Image Recognition Neural Network Architectures

Matrix Multiplication Results Conclusion

• There’s a small overhead involved when creating 

threads on the GPU, so performance improvement is 

only evident when the size of the network is large. 

• Threads on a GPU are capable of executing their own 

unique instructions, but synchronized threads each 

executing the same instruction yields the fastest 

execution speed. 

Figure 2: Standard matrix multiplication. Matrix A (with dimensions 

MxK) is multiplied with matrix B (with dimensions KxN) to yield matrix C 

(with dimensions MxN). 

• A cell in matrix C is the dot product of a row from 

matrix A and a column from matrix B:

𝐶𝑖𝑗 = 𝐴𝑖 ∙ 𝐵𝑗

• A single-threaded approach would be 𝑂(𝑀 ∗ 𝑁 ∗ 𝐾)
time complexity. Three for-loops would be required: Figure 5: A fully-connected network with many layers and 5000 nodes 

in each layer takes 16.067 seconds to complete on the CPU and only 

0.578 seconds to complete on the GPU.

For each of the network architectures, four versions were 

created and compared: one version was created in 

Python, one in C, one with convolutional and fully 

connected layers recreated with Cuda (a GPU 

programming interface), and one with fully connected 

layers utilizing Tensorcores. 

Model comparison VGG-16 (s) LeNet (s) Alexnet (s)

Python (CPU) 12633.41 0.56 1371.79

C (CPU) 1328.21 0.35 150.89

Cuda (GPU) 2.68 0.30 1.05

Tensorcore (GPU) 2.45 0.33 1.01

Figure 6: The duration of a single image prediction for each model 

implementation. Python is the slowest, while hardware-accelerated C

through the usage of Tensorcores is generally the quickest.

Figure 3: Example algorithm to multiply two matrices.  

• A different algorithm on the GPU would create one 

thread per output cell in matrix C. Each thread would 

calculate a single dot product concurrently. The outer 

two for-loops above can be replaced with multithreading. 

• A multi-threaded approach would be 𝑂 𝐾 since the 

length of the dot-product vectors are the only factor that 

contribute to time. Increasing M or N would create more 

threads at no expense to time.

Figure 4: Another approach to processing matrices. Through 

Tensorcores, matrices are multiplied and accumulated concurrently by 

splitting cells into chunks.

Motivation

We wanted to observe the efficiency of GPUs and learn 

ways to optimize neural network-related computations 

through concurrent programming techniques. Networks 

implemented on the CPU waste a considerable amount of 

resources processing data sequentially and single-

threaded. Due to the GPU’s ability to quickly create tens 

of thousands of threads at once, with each thread 

executing instructions on their own partition of data, it 

became apparent of the potential speed improvement that 

could be gained. Coupled with a simulator of a GPU 

named GPGPU-Sim, we can profile an execution of our 

model as well. Our objective was to compare the

performance of three image recognition networks: VGG-

16, Alexnet, and LeNet. 

Figure 1: Layer configuration of the VGG-16 image recognition neural 

network architecture.  

Figure 7: GPU layout. Threads are organized into blocks, which are 

each organized in a grid. 

• Padding is sometimes necessary to ensure 

conditionals are removed from the GPU code to help 

satisfy the previous constraint. An arbitrary number of 

threads cannot be created, they must be aligned 

across blocks. 

• When all constraints are met, GPU-optimized code 

vastly outperforms CPU-only code in relation to 

programs with large amounts of data processed in 

repetitive ways. 

Future Work

• Our program should be updated to accommodate for 

more diverse model types (namely models which are 

non-linear or recursive). 

• Additionally, further optimizations can be made to 

improve data movement; copying data between the 

CPU and GPU incurs a significant time penalty. 


