
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

Neural network models typically consist of a

large volume of data transformed with a

repetitive set of instructions, which sometimes

results in poor performance on serial devices

like CPUs. Alternatively, GPUs are specialized

to dispatch many threads which can each

process a block of data simultaneously. We

compared the performance of three image

recognition architectures when implemented

on the CPU versus the GPU and created a

modular program which can be used in

conjunction with GPU simulators to profile

different low-level aspects of the execution.

Our results demonstrated a tremendous

improvement in speed when networks are

implemented on the GPU compared with the

CPU.

Department of Computer Science

Justin Garrigus, Bora Bulut, Hui Zhao

GPU Implementation of Image Recognition Neural Network Architectures

Matrix Multiplication Results Conclusion

• There’s a small overhead involved when creating

threads on the GPU, so performance improvement is

only evident when the size of the network is large.

• Threads on a GPU are capable of executing their own

unique instructions, but synchronized threads each

executing the same instruction yields the fastest

execution speed.

Figure 2: Standard matrix multiplication. Matrix A (with dimensions

MxK) is multiplied with matrix B (with dimensions KxN) to yield matrix C

(with dimensions MxN).

• A cell in matrix C is the dot product of a row from

matrix A and a column from matrix B:

𝐶𝑖𝑗 = 𝐴𝑖 ∙ 𝐵𝑗

• A single-threaded approach would be 𝑂(𝑀 ∗ 𝑁 ∗ 𝐾)
time complexity. Three for-loops would be required: Figure 5: A fully-connected network with many layers and 5000 nodes

in each layer takes 16.067 seconds to complete on the CPU and only

0.578 seconds to complete on the GPU.

For each of the network architectures, four versions were

created and compared: one version was created in

Python, one in C, one with convolutional and fully

connected layers recreated with Cuda (a GPU

programming interface), and one with fully connected

layers utilizing Tensorcores.

Model comparison VGG-16 (s) LeNet (s) Alexnet (s)

Python (CPU) 12633.41 0.56 1371.79

C (CPU) 1328.21 0.35 150.89

Cuda (GPU) 2.68 0.30 1.05

Tensorcore (GPU) 2.45 0.33 1.01

Figure 6: The duration of a single image prediction for each model

implementation. Python is the slowest, while hardware-accelerated C

through the usage of Tensorcores is generally the quickest.

Figure 3: Example algorithm to multiply two matrices.

• A different algorithm on the GPU would create one

thread per output cell in matrix C. Each thread would

calculate a single dot product concurrently. The outer

two for-loops above can be replaced with multithreading.

• A multi-threaded approach would be 𝑂 𝐾 since the

length of the dot-product vectors are the only factor that

contribute to time. Increasing M or N would create more

threads at no expense to time.

Figure 4: Another approach to processing matrices. Through

Tensorcores, matrices are multiplied and accumulated concurrently by

splitting cells into chunks.

Motivation

We wanted to observe the efficiency of GPUs and learn

ways to optimize neural network-related computations

through concurrent programming techniques. Networks

implemented on the CPU waste a considerable amount of

resources processing data sequentially and single-

threaded. Due to the GPU’s ability to quickly create tens

of thousands of threads at once, with each thread

executing instructions on their own partition of data, it

became apparent of the potential speed improvement that

could be gained. Coupled with a simulator of a GPU

named GPGPU-Sim, we can profile an execution of our

model as well. Our objective was to compare the

performance of three image recognition networks: VGG-

16, Alexnet, and LeNet.

Figure 1: Layer configuration of the VGG-16 image recognition neural

network architecture.

Figure 7: GPU layout. Threads are organized into blocks, which are

each organized in a grid.

• Padding is sometimes necessary to ensure

conditionals are removed from the GPU code to help

satisfy the previous constraint. An arbitrary number of

threads cannot be created, they must be aligned

across blocks.

• When all constraints are met, GPU-optimized code

vastly outperforms CPU-only code in relation to

programs with large amounts of data processed in

repetitive ways.

Future Work

• Our program should be updated to accommodate for

more diverse model types (namely models which are

non-linear or recursive).

• Additionally, further optimizations can be made to

improve data movement; copying data between the

CPU and GPU incurs a significant time penalty.

