GPU Implementation of Image Recognition Neural Network Architectures

Justin Garrigus, Bora Bulut, Hui Zhao

Department of Computer Science

- - Matrix Multiplication Results

Neural network models typically consist of a
large volume of data transformed with a)) . . Increasing width large length « There’s a small overhead involved when creating
repetitive set of instructions, which sometimes | | | | =0 threads on the GPU, so performance improvement is
results in poor performance on serial devices X - wl cPu)/ only evident when the size of the network is large.
like CPUs. Alternatively, GPUs are specialized M Matrix A Matrix C | |m Threads on a GPU are capable of executing their own
0 di X h h C’I hich h Matrix B | K o5 | unique instructions, but synchronized threads each
O dispatcn many threa S_ wnicn can eac n executing the same instruction yields the fastest
process a block of data simultaneously. We P execution speed.
compared the performance of three image 5
recognition architectures when implemented Figure 2: Standard matrix multiplication. Matrix A (with dimensions 2157 Txs000
on the CPU versus the GPU and created a o dmemeiona g (i dimensions K o YIeld matb ¢) ol Lft] o0 | w1 || o
modular program which can be used in
conjunction with GPU simulators to profile - Acell in matrix C is the dot product of a row from 51 — e e e Sl I R o
different low-level aspects of the execution. matrix A and a column from matrix B: Y 0.578 — L —| o | oo [mo
Our results demonstrated a tremendous Cij = A; - B; o 100 200 00 4000 s00 6000 7000 Block | Block Block
improvement in speed when networks are + Asingle-threaded approach would be 0(M * N * K) Width oM | ow [ma S | b W
Implemented on the GPU compared with the time complexity. Three for-loops would be required: Figure 5: A fully-connected network with many layers and 5000 nodes
CPU in each layer takes 16.067 seconds to complete on the CPU and only \

. 0.578 seconds to complete on the GPU. el | T —

for 1 i1n range (M) : ON | LN [7] NN
for 3 in range(N): For each of the network architectures, four versions were

o E L Ee cli, 31 =0 created and compared: one version was created in
o N = N] =1 S R S Bl S S R R o T for k 1in range (K): Python, one in C, one with convolutional and fully Figure 7: GPU layout. Threads are organized into blocks, which are
2| 2| o 2| 2| &| 2| B| E| 2| 2| 2| | &| &| 8| &§| & . _ : N - i each organized in a grid
SISl % 88l %888l %58 8l8 B = ~lala C[1,7] += A[1,k] Blk,7]] connected_laygrs recreated with Cu_da(aGPU g grid.
= = = = programming interface), and one with fully connected

Figure 3: Example algorithm to multiply two matrices. layers utilizing Tensorcores.

« Padding is sometimes necessary to ensure
conditionals are removed from the GPU code to help
satisfy the previous constraint. An arbitrary number of
threads cannot be created, they must be aligned
across blocks.

Figure 1: Layer configuration of the VGG-16 image recognition neural
network architecture.

« Adifferent algorithm on the GPU would create one
thread per output cell in matrix C. Each thread would
calculate a single dot product concurrently. The outer

Model comparison VGG-16 (s) LeNet (s)

two for-loops above can be replaced with multithreading. Python (CPU) 12633.41 0.56 1371.79 « When all constraints are met, GPU-optimized code
We wanted to observe the efficiency of GPUs and learn « A multi-threaded approach would be 0(K) since the vastly outperforms CPU-only code in relation to
ways to optimize neural network-related computations length of the dot-product vectors are the only factor that programs with large amounts of data processed in
through concurrent programming techniques. Networks contribute to time. Increasing M or N would create more C(CPU) 1328.21 0.35 150.89 repetitive ways.
implemented on the CPU waste a considerable amount of threads at no expense to time.
resources processing data’ squgntially gnd single- Cuda (GPU) 268 0.30 1.05 Future Work
threaded. Due to the GPU’s ability _to quickly create tens o | v | | v o Py gy p— s | e | wan || e
of thousands of threads at once, with each thread * Our program should be updated to accommodate for
executing instructions on their own partition of data, it D = B e e y el it I)l s Tensorcore (GPU) 2.45 0.33 0 more diverse model types (namely models which are
became apparent of the pOt_entla| §peed improvement that A[20] | Al21] | A[2.2] | A[23] B[2.0] | B[21] | B[2:2] | B[23] c[20] | cl24] | ci22] | c[z3] non-linear or recursive).
could be gained. C_:OUpled with a S_'mU|at0r of a GPU w50l | asa1 | a1 | A w501 | 5511 | 51821 | 535 01 | ot | ozt | s Figure 6: The duration of a single image prediction for each model Additionally, further optimizations can be made to
named GPGPU-Sim, we can profile an execution of our implementation. Python is the slowest, while hardware-accelerated C improve data movement; copying data between the
model as well. Our Ob.jeCtlve was to compare the | | | through the usage of Tensorcores is generally the quickest. CPU and GPU incurs a significant time penalty.
performance of three image recognition networks: VGG- Figure 4: Another approach to processing matrices. Through
16. Alexnet. and LeNet. Tensorcores, matrices are multiplied and accumulated concurrently by

splitting cells into chunks.

