
Image-based Ransomware
Justin Garrigus

Computer Science Department
University of North Texas

Denton, Texas, USA
justingarrigus@my.unt.edu

Abstract—Ransomware applications present a threat to the
availability of user data by encrypting files after a malicious
program is executed, only decrypting the files after some payment
is received. This malicious program may be introduced to the user
through non-standard means through exploitation of obscure
attack surfaces. In this work, we show a new ransomware that
is based on images: the ransomware targets a toy image-viewing
application and infects the user with a buffer-overflow introduced
through a malformed image, and it encrypts the users files with
RSA and transforms the result into an image the user can view.
Key distribution is based on a server/client symmetric/asymmet-
ric encryption technique that ensures users cannot retrieve their
files without communication with the malicious server owning
the keys. Additionally, a file-monitor is included that checks the
state of the system for read/write accesses and notifies the user
when mass-encryption appears to occur.

This project places a large emphasis on low-level execution
details and includes a manual implementation of RSA encryp-
tion/decryption with arbitrary-size keys. The resulting program
is not meant to be high-end or otherwise unbreakable, but is
instead a learning exercise to encourage an understanding of
how cryptography primitives work.

Index Terms—ransomware, cryptography, RSA, encryption

I. INTRODUCTION

Ransomware presents a combination of many distinct areas
in computer security, including parallel processing, operating
system and hardware design, complexity analysis, networking,
and cryptography. Understanding how ransomware works by
building a new malicious program gives an opportunity to
combine these areas together and can be safely done through
utilization of a virtual environment. Some techniques that are
popular in ransomware like key encryption and buffer over-
flows are necessary for all computer scientists to understand
regardless of discipline or specialization.

This project is an implementation of the standard approach
ransomware applications apply to encrypt files but with novel
concepts that increase its originality. Some of these concepts
are for pedagogical purposes at the expense of decreasing
the security of the program, while others do not affect the
programs security.

Typical ransomware applications are divided into several
parts:

1) Infection: the malware is received by the user and
modifies the behavior of their system.

2) Encryption: files on the user’s system are modified to the
extent it would be reasonably difficult for a dedicated
user to reverse.

3) Decryption: after payment is received, the attacker com-
municates some method to the user on how to return
their files to the original state.

The variability in ransomware techniques stems from the
difficulty of the infection step: it is exceedingly difficult to
get a user to run arbitrary code on their system due to the
security practices software engineers employ in their operating
systems and antivirus programs. Although, certain cybersecu-
rity concepts remain prevalent in the distribution of malware
despite their age and widespread popularity. For example,
buffer overflows are common due to their ability to place data
into executable regions of memory, and other approaches like
heartbleed are variations on the standard method.

This paper outlines our approach at creating a new ran-
somware based around images. It assumes the user has an
image-viewing software with a vulnerability in it that allows
a malformed image file to write create log files with new data
and file names, letting an attacker overwrite an executable file
with new code. The attacker can then simply send the user an
image file through social media or other communication means
and wait for the user to attempt to open it. Once infected, the
user unwillingly generates a public-private key pair, has their
private key encrypted by the attacker, and uses their public
key to encrypt their own files. To decrypt their files, the user
would send payment along with their encrypted private key
to the server which the server would decrypt and then return.
Finally, the user can re-execute the malware with the private
key, returning the files to their original state.

In contrast to this standard approach to ransomware, several
new features were added. First, the encryption method is a
C implementation of RSA with arbitrary-precision arithmetic,
which includes a Miller-Rabin prime number finder for the
keypair generator. Second, after the user’s files are encrypted
with RSA, they are transformed into image files that can be
viewed by other software. The images are encoded with least
significant bit (LSB) steganography which takes a base image
(either requested from the malicious server or taken from an
online website) and encodes a given file directly into it. The
result of this is a unique attack method that the user can
actually see the results of: the user can open up a sensitive
file (e.g., one containing a list of important passwords) and
view the contents of it in a new form (e.g., changing this
”passwords.txt” file into a picture of a dog).

This paper is divided into four sections. Section II gives
an overview of the theory of ransomware with explanations

on the cryptography and practical details. Section III details
the implementation of the system itself and their component
parts, including the user system, infection, key creation and
distribution, image transformation, and monitoring, along with
potential modifications that could be made to the design.
Section IV gives a step-by-step walk-through of the actions
the ransomware takes from initial infection to removal.

II. RELATED WORKS

This section will describe the background to the ran-
somware. Since a focus on the project was on recreating
components at a low level, emphasis was placed on creating
both a modular design and a theoretically-sound product. In
particular, three components required researching: steganogra-
phy, RSA encryption, and buffer overflows.

A. Steganography

Steganography is the act of hiding data within a file without
a casual observer being able to notice the original file was
modified. The basis of our design was described in [1], which
outlines several methods of increasing complexity on how to
encode information within an image. The simplest method is
to use least significant bit encoding, which takes a message
of size n bits and encodes k bits per byte in the image,
shown in figure 1. Assuming a three-channel color image,
the least significant bits are the least important in conveying
the contents of the image. As such, they are the easiest to
replace without the end user noticing something was changed.
If k = 1, then the encoded message is invisible to any human,
and is easily mistaken for compression.

dog.png

Fig. 1. LSB steganography, with (left) the base image and (right) one bit of
the ”lorem ipsum” sample text encoded in each byte of the image.

[1] also describes additional methods of steganography
besides the basic LSB encoding scheme including use of a
Caesar cipher and key-based columnar transposition, but these
methods are unnecessary for this project. In fact, steganogra-
phy is typically used to be undetectable by the end user, but
this is not a particular concern for a ransomware application;
ransomware developers want the end user to act quickly
after learning about the encryption of their files in order to
encourage impulse decisions on sending payment, and users
may not notice–or otherwise may not gain any sense of
urgency–if they do not immediately realize important data
was lost. This means we can afford larger k values for our
steganography approach, which lets us encode more bits of
the message into the base image per byte.

B. RSA encryption

The encryption primitive employed for this project was
RSA. This was originally chosen due to its simplicity and
popularity as well as it being asymmetrical, which makes it
easier to hide an encryption key within the malware without
concern of the user finding a way to decrypt their files on their
own. The RSA algorithm consists of a prime-number generator
and key creation.

The goal of the prime number generator is to quickly
find two prime numbers of sufficiently-large length that can
be used for key generation. The issue is that deterministic
primality tests are extremely time consuming especially for
secure key sizes (e.g., 2048-bit keys which require two prime
numbers 1024-bits long), so the nondeterministic Miller-Rabin
primality test [2] is a sufficient alternative to give numbers with
high a likelihood of being prime.

In plain English, the Miller-Rabin test randomly chooses a
large number and sequentially tests each of their successors
for primality. The Prime Number Theorem [3] approximates
the amount of prime numbers that exist below some threshold,
and it predicts that the likelihood p of a given number being
prime decreases with the number of digits d, calculated with
the expression

p =
1

d− 1

For example, if a 64-digit number is chosen at random, the
probability of it being prime is 0.0159. Put another way, it
would take on average 63 primality tests until we identified a
prime number.

Deterministic tests are generally much slower or require
much more pre-computed information than probabilistic tests,
but have the benefit of guaranteeing if a number is prime. RSA
takes the product of two prime numbers N = p× q and relies
on the difficulty of factoring N into their given components.
If p or q turned out to be composite, then the product N
would be easier to factorize, which would undermine RSA’s
security. This may make probabilistic tests like Miller-Rabin
unattractive since it is unable to guarantee a number is prime,
but an extra mechanism is included in Miller-Rabin to include
their confidence: repeated tests.

Miller-Rabin can be considered more as a ”compositeness”
test rather than a primality test due to its ability to confidently
tell if a number is composite but only assume when a number
is prime. The way it checks this is by running k iterations
of their composite test, where each test essentially has a 25%
chance of falsely announcing a composite number is prime. As
such, the probability of a composite number being assumed
as prime is 4−k. This means a high enough k value is nearly
guaranteed to yield correct prime numbers. A popular iteration
count is k = 40, which is high enough to ensure that an
unavoidable hardware failure is more likely to result in a false-
positive than the primality test itself is.

C. Buffer Overflow

Buffer overflow attacks exploit a flaw in program design
in which critical data is placed in the same address space as

user-writable data. The critical section is illegally modified
by the user which changes the output of the program in
some unintentional way. The standard form of buffer overflow
[5] is a stack-based ”stack-smashing attack” which works by
copying the data from a user-writable portion of memory into
a buffer of limited size, specifically overwriting the portion
of the stack that holds the return address of a function. The
program would then jump to the code specified by the address
which may contain more arbitrary data the user specified
themselves, allowing them to grant a new process escalated
privileges or to otherwise view or edit data the process was
not otherwise intended to observe.

This stack-smashing attack is well studied but difficult to
setup. It requires very detailed information about a target pro-
gram and careful consideration of runtime information–which
may be gained from observation of the source code or binary
executable file–but still can only be performed once certain
guards like a non-executable stack and StackGuard canaries
[5] are explicitly removed from the compiled program.

An alternative to this approach is to create a buffer overflow
method that works regardless of compiler flags being set. This
would require a software-only approach to overflowing data
only in user-writable portions of memory, placing executable
data in places the program already expects executable data to
be in. A simple example of this attack is shown in listing 1, in
which a flag ADMIN_FLAG exists as a predefined macro, but
is overwritten if the value in the string name is greater than
the size of the buffer. Any name that is 7 characters or longer
will cause flag to contain a nonzero value, which makes the
condition at line 8 evaluate to true and the subprocess to be
spawned with escalated privileges.
1 void spawn_subprocess(char* name) {
2 char buffer[6];
3 // Macro: 0 if low privilege,
4 // 1 if high privilege.
5 int flag = ADMIN_FLAG;
6

7 strcpy(buffer, name);
8 if (strcmp(buffer, "admin") == 0 || flag)
9 system("sudo ./run_process");

10 else
11 system("./run_process");
12 }

Listing 1. Simple buffer overflow attacks

A variation of the attack with user-defined code is shown
in section III, but the concept remains the same: no additional
compiler flags can prevent this attack because it relies on the
software implementation’s insecurity and inherent language
requirement that C does not check for array bounds when
accessing data. As such, this attack is much more portable
and can be executed on a larger number of systems.

III. APPROACH

This section will describe each of the core components
for the ransomware application. The ransomware builds on
the aforementioned related works by integrating them into
different C programs combined together to make a single
malicious application. This includes the cryptography module,

the buffer overflow module, the steganography module, and the
monitoring module.

A. Cryptography

The cryptography code builds off of the RSA algorithm
with the Miller-Rabin prime number generator. This section is
inherently less secure than standardized cryptography systems
like the one given in openssl due to it being a simplified
implementation for pedagogical purposes, but it still functions
regardless as a low-security encoding device that would be
difficult to crack without experience in cryptography.

In particular, RSA is normally a deterministic encryption
scheme which gives a consistent output for the same key and
input sequence. This can be insecure due to plaintext attacks,
where unencrypted messages are passed through the public
key in order to test if they match the encrypted data. This
could cause the victim to avoid paying for the decryption key
by attempting to rebuild their important files by generating
likely candidates for the files, encrypting it with the public
key, comparing it to the ciphertext, and accepting it as the
original file if it matches. Padding schemes like PKCS#1 [6]
avoid this by essentially randomizing the input plaintext before
it is passed to the RSA encryption method which makes it
considerably more difficult to brute-force decode files without
the private key. Although, padding was not implemented in
this project due to time constraints, but it can easily be added
by simply transforming the input message before it is piped
to the RSA component described next.

Listing 2 shows the main overview of the Miller-Rabin
method to test if n is prime. First, the method picks a number
n− 1 and divides it until it gets an odd number (2-4), which
is synonymous with removing the trailing 0’s from n’s binary
representation. Then, it composite_test’s the number
ITERS times (5-6), only announcing the number as prime
if it passes every test (8). This ITERS value is the ”iteration
count” mentioned in section II, where each iteration has at
most a 75% chance of correctly confirming n as composite–
or, alternatively, falsely suggesting n is prime when it really
is not.
1 int millerrabin(int n) {
2 int d = n - 1;
3 while (d is even)
4 d = d / 2;
5 for (int i = 0; i < ITERS; i++)
6 if (composite_test(n, d) failed)
7 return 0;
8 return 1;
9 }

Listing 2. Miller-Rabin primality test

The test method in listing 2 is the compositeness test
that checks if the n is composite, which is summarized in
listing 3. The mathematical workings of this function is out of
scope for this paper, but the important part is the random-
number generator (2) which makes repeated executions of
composite_test yield different results. Additionally, it is
important to note that this test does not confirm that a number
is prime but rather announces if different congruence relations

(4, 9) are true. The value a in this case is checked if it
is coprime to n, or GCD(a, n) == 1, which means if a
random variable a has a non-zero factor shared with n, then
n therefore has a factor greater than one, which makes it non-
prime.

1 int composite_test(int d, int n) {
2 int a = random(2, n-2); // Inclusive
3 int x = pow(a, d) mod n;
4 if (x == 1 || x == n - 1)
5 return 1; // "n" may still be prime
6 while (d != n - 2) {
7 x = pow(x, 2) mod n;
8 d = d * 2;
9 if (x == 1)

10 return 0; // "n" is definitely
composite

11 else if (x == n - 2)
12 return 1; // "n" may still be prime
13 }
14 }

Listing 3. Miller-Rabin compositeness test

The Miller-Rabin test can be rewritten to generate prime
numbers easily. Noting from section II that the probability
of a number with d digits being prime is approximately 1

d−1
due to the prime number theorem [3], we can choose some
initial value n that is d digits long and subsequently test itself
and approximately d − 2 of its successors for primality with
the Miller-Rabin test shown in listings 2 and 3. This now
completes the backbone of the RSA algorithm shown next.

The RSA algorithm used in this project has three core
components: key-pair generation, encryption, and decryption.
Key-pair generation is shown in listing 4, represented as a
function that yields an n, e, and d value. It works by first
creating two large prime numbers (2-3), getting their product
n (4), calculating the Carmichael’s totient function l (5), and
findingthe modular multiplicative inverse of a constant value
e (6-7). The two values n and e make up the public key
for encoding plaintext into ciphertext, and the values n and
d make up the private key for decoding ciphertext back into
plaintext.

1 tuple(n, e, d) generate_keypair() {
2 int p = generate_prime(); // Miller-Rabin
3 int q = generate_prime();
4 int n = p * q;
5 int l = lcm(p-1, q-1);
6 int e = 65537;
7 int d = pow(e, -1) mod l;
8 return tuple(n, e, d);
9 }

Listing 4. RSA key-pair generation

Once a key-pair is generated, the private key is kept hidden
by the user and the public key is distributed to anybody who
needs to send a secure message to the user. Encryption is
performed by splitting a message into b-byte chunks, where
b is the size in bytes of the value n in the key-pair, and
transforming each chunk cplain into a new encrypted number
cenc through the equation cenc = (cplain)

e mod n. Each
chunk can be stored into a different file or transferred over a
network. The reverse process, or returning an encrypted chunk
back into its plaintext form, can be done with the equation

cplain = (cenc)
d mod n.

An important detail to note is that integers in a language
like C are fixed-length of size less than 8 bytes long, and
RSA prime keys need to be hundreds or even thousands
of bytes long. This requires use of an arbitrary-precision
arithmetic module and we utilized the GNU Multiple Precision
Arithmetic Library [7] to do this1.

B. Buffer Overflow

The buffer overflow technique used for this project is similar
in concept to the one shown in section II. It relies on the
fact that a block of arbitrary data writable by the user can
become executable if it is placed into an area of memory
the user has previously denoted as executable. This program
works by parsing ppm image files which have three important
data fields: an image width, height, and buffer of RGB
binary data of size width * height * 3. The program
may contain a struct like the one shown in listing 5 to hold
this data.
1 struct imgdata {
2 int width, height;
3 char *buffer;
4 char *logfile;
5 char *logname;
6 int *logfile_size;
7 };

Listing 5. Struct with a buffer-overflow vulnerability

1 void parse_image(char* file_name) {
2 FILE *image_file = open file_name for reading

;
3 data->width, height = read from image_file;
4

5 struct imgdata *data = allocate buffers;
6 strcpy(data->logfile, "Successfully opened.")

;
7 strcpy(data->logfile_name, "log.txt");
8 data->logfile_size = strlen(data->logfile);
9

10 data->buffer = char_copy(image_file);
11

12 save data->logfile to data->logfile_name;
13 }

Listing 6. Image-parsing application with buffer-overflow vulnerability

An overview of our program is depicted in listing 6.
First, we assume that buffer, logfile, logname, and
logfile_size in listing 5 each exist in the same portion
of memory, which can be achieved by using malloc to
allocate a large block of memory and assigning each pointer
to a different location of that block (5). In our program, we
assume that a file with the name of logname is written at
the end of execution with the contents of logfile (12).
Once the file is successfully opened, we intend to write the
string "Successfully opened." to a log file named
log.txt (6-7). Then, the program proceeds to read the

1The GMP library has a function mpz_probab_prime_p that automat-
ically performs the Miller-Rabin test and a function mpz_nextprime that
automatically identifies the next prime number greater than some threshold
value, but neither of these functions were used in this project in order to create
a new solution from scratch for pedagogical purposes.

contents of the image file itself and copy the data into the
image buffer (10).

The issue with the code in listing 6 is if the image_file
contains malformed data. Consider a situation in which the
size of the buffer is allocated (3) before copying the buffer
itself (10). In most programs, the amount of data read from
the file would equal to the expected size of the buffer (e.g., by
utilizing a method like strncpy), but an insecure program
may utilize a method like the one shown in listing 7 which
copies a buffer regardless of the expected file size. Properly-
formed image files would have no issue with this design, but a
malicious user could create an image with the following traits:

1) The width and height of the image are each set to 0.
The program will use char_copy (listing 7) or some
other method to copy the rest of the data in the file into
the struct shown in listing 5.

2) The buffer segment of the image file instead contains
the data copied from a malicious executable file. This
overwrites the logfile variable in the struct, which is
the contents of the log file.

3) After the executable file, the name of the file is set
to the name of some executable file the attacker is
sure the user will run in the future. In our pro-
gram, we used "view_image", which is a hypo-
thetical image-viewing software which is run after the
"parse_image" program finishes. This string over-
writes the logname variable in the struct, which is the
name of the log file.

4) Finally, the size of the executable file is written after
the new name of the log file. This overwrites the
logfile_size variable.

1 void char_copy(unsigned char* buffer, FILE* f) {
2 unsigned char ch;
3 unsigned char *buffer_ptr = buffer;
4 for (int written; written != 0;) {
5 written = fread(&ch, 1, 1, f);
6 *buffer_ptr = ch;
7 buffer_ptr++;
8 }
9 }

Listing 7. A common programming pattern typically used in debug code
to read every byte from a file

Typically, the program will write an innocuous log message
as shown in listing 6 to the file log.txt, but the attacker
can modify this to point to an executable file on the user’s
machine (for example, /usr/bin/bash). The attacker can
construct some malicious program and then copy the contents
of that program into their image file so it gets copied into
this log file location. If the log file name is the same as an
executable file on the user’s system, then this allows arbitrary
code to get executed.

C. Steganography

The steganography module is an optional portion of the
ransomware that encodes a message into an image with
LSB encoding. This does not affect the level of security
for the ransomware due to the simple encoding scheme and
widespread knowledge of the LSB method of encoding, so a

dedicated user with lots of resources would be easily capable
of returning their files to their unencrypted state if this was
the only defence. That being said, in the context of a real-
world situation, image-based encryption would have the added
benefit of creating a novel, distinct-looking ransomware. If
popularity is a concern for ransomware developers, then a
program which transforms arbitrary files into recognizable
images would be favorable as the news of it would spread
more quickly than a standard ransomware would.

A concern presented in section II was the limited size of
LSB encoding. The typical use of this method is to commu-
nicate messages in data without the end user discovering a
message was encoded into the file, but this is not a concern for
a ransomware. As such, we can adjust the standard method by
increasing the number of bits encoded into the image. Figure
2 shows the result of LSB steganography being performed
with four bits of encoded message for each byte of the image,
as opposed to 1 showing only one bit per byte. Even with
this much data being encoded, the resulting image still looks
almost identical to the base image. Enlarging the image shows
artifacts that looks like compression or a high-contrast filter,
but this still can be easily mistaken for a blurry image rather
than a deliberate attempt at data encoding.

D. Monitor

The monitor is a defense against the ransomware attack
and can be used as a precautionary method to prevent a
ransomware from spreading to larger portions of the oper-
ating system. It works by checking a directory for a typical
ransomware signature and sending a notification to the system
when one occurs. This project utilizes the inotifywait
module to handle automatic updates when a directory is
modified.

In particular, the specific events that are monitored are
access, create, and delete. Ransomware–or at least the
one described in this project–function by reading a file for its
contents (access), passing the stream of data from a file
through a transformation function to yield a new encrypted
file (create), and deleting the original unencrypted file
(delete).

The monitor takes the form of an inotifywait com-
mand that observes a given directory and outputs the event
to stdout when one occurs. The event then contains the
file name, directory name, and event type that occurred. We
created a python script which will run on the host’s system
and parse each modification to the directory by checking the
stdin connected to the inotifywait’s output.

The monitoring process assumes that the access, create, and
delete events happen in quick succession from each other. Ran-
somware need to encrypt lots of information very quickly to
maximize the damage performed, so it is not unreasonable to
assume that the events are temporally localized. Furthermore,
an end user may realize something bad is occurring if the size
of available memory on their system decreases very quickly,
so ransomware may be unable to avoid our detection method
by, for instance, bulk-deleting all the original files at the very

end of the encryption process instead of deleting the files as
they are encrypted.

The monitor creates a queue and organizes the events in
terms of their execution times. Events that occurred more than
a time_threshold amount of time ago are removed from
the queue; for our program, a threshold value of about 10
seconds is more than enough time to detect if a ransomware
attack is being performed. Next, the monitor correlates two
types of events together:

1) We connect the access and delete events of
the same file together. If this occurs, then an
accdel_counter value increments.

2) We note the number of times that files are created by
incrementing another create_counter value.

When an event occurs more than the time_threshold
time ago, then the two counters are decremented back in order
to ”undo” the changes the event caused.

Finally, whenever an event is spawned, the two counter val-
ues are compared. If both create_counter is within 0.8×
of accdel_counter, and accdel_counter is greater
than a accdel_threshold value (which we set to be equal
to min [10, 0.8× len(directory)]), then a ransomware
attack is assumed to be taken.2 The system administrator can
respond to this however they choose (either by suspending all
processes and backing up the specific directory or by killing
the processes that are causing the events).

IV. RESULTS

This section gives a full walkthrough of the ransomware
from the initial infection of the user to the encryption of their
files and to their subsequent decryption. Additionally, it shows
how the monitoring software can detect when ransomware is
likely being used.

To begin, the attacker needs to create a malicious image
to send to the user. Due to the principle of open design,
we can assume the attacker is aware of the source code of
the image-viewing application and the operating system of
some victim, and as such they can construct an input file
that exploits vulnerabilities in their designs. The attacker first
creates some malicious software that they want to be run
on the victim’s device, which in our case will be a mass-
encryption tool described next. They can compile this software
into an executable file, and then create an image with the
qualities described in section III. Besides this, the attacker will
additionally use the RSA key-generation program to create
a server-key.pub and server-key.pri. The private
key will be kept hidden by the attacker, and the public key
will be embedded in the malicious executable file.

Next, the attacker can simply send the image to a victim
which is known to utilize this image-viewing application. They
can do this through email, forums, social media, or other
image-sharing formats. It is important to note that the mal-
formed nature of this image will likely prevent it from being

2The significance of the constant 0.8 is to give a small amount of leeway
for the delay in encrypting files. This allows one counter value to be slightly
smaller than the other while still being relatively equal to it.

rendered on some well-designed image-viewing applications,
especially if they have measures in place to prevent malformed
images from being displayed. Although, this is not always the
case; as described in section III, the width, height, and image
content does not need to be zero (they can be from a genuine
image) as the malicious file is only appended to the end of the
file for the purpose of replacing the log file generated by the
image-viewing application itself. Therefore, some applications
which ignore appended data can still render the image just fine,
which makes this attack undetectable unless the user manually
downloads the image onto their computer and views it through
their own software.3

The toy image-viewing application made for this project
works by (1) parsing an image in a standard image format
with the parse_image program and (2) viewing the raw
data of the parsed image with the view_image program.
The vulnerability occurs when the parse_image program
attempts to create a log file, which the malicious image
overwrites with executable data with the same file name as
view_image. Since the view_image program is executed
afterwards, the malicious executable data is unknowingly run
by the user and the attack proceeds.

After that, the cryptography model generates an RSA key-
pair named client-key.pub and client-key.pri.
The private key is encrypted using the server-key.pub
embedded earlier, and the original key is deleted from
the user’s system. Now, the program can start using the
client’s public key to encrypt all the files in a given di-
rectory.4 The only way to decrypt these files is to use the
client-key.pri file which can only be obtained by the
server that owns the server-key.pri.

Then, each encrypted file is passed through a small
steganography program which pulls a random image from
online5 and encrypts the file entirely within it. The file is
resampled with a point filter to fit the data as close as possible,
noting that 4-bit LSB encoding means the size of the ppm file
should be double that of the encrypted data file.

At this point, the user’s files are encrypted. The user
can navigate to the encrypted directory and find that files
like dissertation.tex have been transformed into
dissertation.tex.enc.ppm, which may depict some-
thing innocuous like a picture of a dog. An advanced user
(or one with lots of money to spend on cryptography experts)
may be able to retrieve their files without the use of a key
by attempting a chosen plaintext attack to recreate their file
based on the expected file format and contents due to the lack

3In fact, the default image viewer for the Windows 10 operating system
works this way for PNG files. Editing a PNG by appending random data will
not prevent image-viewing applications from opening them, so our attack
would at least be viable in this case.

4In our case, we only target the files contained in a critical directory
on the user’s desktop. This can be modified to, for instance, target all files
from the user’s root / directory, or to only target data files like pdf’s or
jpg’s that are likely to be both small in size and important to the user.

5We used the attacker’s server to do this for simplicity with a
script that pulls a random ppm file from the home directory, but
this could come from a website that returns random image files like
thispersondoesnotexist.com.

bus.png

Fig. 2. Enlarged image comparing (left) a base image and (right) the base image with ”lorem ipsum” sample text encoded at four LSB per byte

of RSA padding, but the average user cannot reasonably expect
to discover this on their own.

Once the user decides to pay for decryption, they
send both payment and their encrypted public key file
client-key.pri.enc to the malicious server. The
server then decrypts this file using their own private key
server-key.pri, yielding a new client-key.pri that
is sent back to the client. Finally, the client re-runs the image
application with the modified view_image program, which
checks if the decrypted client key exists in the same directory
as the encrypted files. If it does, the program takes each file,
scrapes the message from the LSB-encoded file, decrypts the
encrypted data with the client’s private key, and removes any
trace the ransomware left on the user.

Lastly, the monitor can be run on the target critical
directory to detect when the ransomware is being performed.
When a directory initially has 8 files in it, this causes the
accdel_threshold to equal min[10, 0.8× 8], or 6. This

means that when at least 6 accesses and deletions of the same
file is performed, as well as at least 0.8× 6 = 4 file creations
are performed in the span of 10 seconds, then a ransomware
is assumed to be taking place. When the monitor is running
in the background, it successfully detects the execution of the
ransomware.

REFERENCES

[1] Handrizal, J. T. Tarigan, and D. I. Putra, ”Implementation of steganogra-
phy modified least significant bit using the columnar transposition cipher
and caesar cipher algorithm in image insertion,” in Journal of Physics:
Conference Series, 2021, pp. 1–7.

[2] K. Conrad, ”The Miller-Rabin test”, University of Connecticut, 2017.
[3] H. Rowland, ”The role of prime numbers in RSA cryptosystems”,

Georgia College and State University, 2016.
[4] E. Milanov, ”The RSA algorithm”, University of Washington, 2009.
[5] K. Lhee and S. J. Chapin, ”Buffer overflow and format string overflow

vulnerabilities”, in Journal of Software Practice and Experience, 2003,
pp. 423–460.

[6] A. Smith and Y. Zhang, ”On the regularity of lossy RSA: Improved
bounds and applications to padding-based encryption,” in International
Association for Cryptographic Research, 2015, pp. 609–628.

[7] GMP MP: The GNU multiple precision arithmetic library.

