
Parallel Processing: Polyhedral Compilation

Justin Garrigus
University of North Texas

Department of Computer Science and Engineering
justingarrigus@my.unt.edu

Abstract

Polyhedral compilation is a unique branch of computer
science and mathematics aimed at rewriting loop state-
ments with inter-iteration dependencies to run in parallel
through geometric transformations. By computing scatter-
ing matrices and applying them to a algebraic represen-
tation of code, a loop that was previously strictly sequen-
tial can be automatically transformed into one that can
run across multiple cores without any data dependencies.
This work implements a source-to-source compiler aimed
at automating the polyhedral compilation process by per-
forming manual transformations on code sequences with
custom-designed #pragmas and by utilizing three popu-
lar tools built for the domain including OpenScop, Clan,
and CLooG. To avoid computing complicated abstract lin-
ear algebra formulas that require additional tools to be
installed, a random search of suitable transformations is
performed automatically and the optimized kernel with the
highest performance that preserves the semantics of the
original program is chosen. Our compiler achieves better
performance on two out of three input kernels compared to
a non-optimized equivalent.

1. Introduction
Modern high-performance computing places an extreme

emphasis on improving the level of parallelism that can be
obtained from programs, including thread-level parallelism
that run discrete instructions across multiple cores and
instruction-level parallelism that exploit vectorized hard-
ware units and pipelining to spread computation across a
single core. Although, the benefit of these systems de-
pend entirely on the ability of the programmer to imple-
ment them. Code which is not designed to run on multiple
cores or code that has an otherwise large reliance on sequen-
tial execution would not benefit from modern hardware im-
provements. Thus, an automatic software-based solution is
beneficial in alleviating the difficulty from the programmer.

One popular hardware pattern popularized in the 1970s

was the concept of systolic arrays [12]. Featuring di-
rect node-to-node connections rather than a shared memory
space among all nodes, the hardware optimization greatly
improved the amount of computing work that could be per-
formed without operators needing to save and load data
through an extensive and often unpredictable memory hi-
erarchy. It introduced a big limitation in programming abil-
ity, as the convenience of a shared memory space among
functional units needed to be removed in favor of structured
parallelism, but certain computing domains like deep learn-
ing, image processing, and scientific computing still benefit
from it today.

Some algorithms are naturally structured as systolic ar-
rays, where a multi-dimensional loop has elements of an
array computed in one iteration that are used across other
iterations. If this array is not easily divisible across an axis
of the loop, then naive processors must resort to executing
them sequentially. To combat this, the domain of polyhedral
compilation was developed to restructure loops so parallel
axes can be exposed.

An example of polyhedral compilation taken from our
compiler is given in appendix A, depicting the task of Gaus-
sian elimination. The unoptimized code example contains
a three-dimensional for-loop with two statements, where no
single axis can be simply rewritten via OpenMP calls to run
in parallel due to dependencies among loop iterations. Poly-
hedral compilation consists of a number of abstract sub-
optimizations performed implicitly, including loop skew-
ing, fusion, shifting, tiling, distribution, and more. As such,
it can be optimized to run across multiple processors, to use
a smaller code size or control overhead, and to prioritize lo-
cal memory accesses across small time frames to exploit the
cache.

Instead of representing these optimizations as a typical
compiler would, polyhedral compilation is made up entirely
of linear algebra operations. Code accesses and transforma-
tions are internalized as matrices and linear relationships,
and a sequence of math operations can lead to the gener-
ation of different optimized kernels. Due to the regular
accesses certain systolic program types exhibit on fixed-



size arrays, the conversion of code to matrices and the re-
conversion back to optimized code can be performed easily.

This paper describes a simple approach to generating
code under the polyhedral model. Instead of taking a com-
plex, time-consuming approach involving abstract linear al-
gebra, we implement a grid-based transformation genera-
tor that proposes a search-space and a automated executor
that yields an optimized kernel from unoptimized user code.
The compiler extracts code marked by C #pragma state-
ments, converts it to matrix representation through Open-
Scop and Clan, computes a collection of candidate trans-
formation matrices, tests the resulting program for seman-
tics and performance, reinserts the optimal kernel translated
by CLooG into the original program, and passes the entire
source file through GCC for the user to execute.

The rest of the paper is organized as follows. Sec. 2
gives an overview of the polyhedral model and a step-by-
step walkthrough of how it can be used to optimize systolic
programs. Sec. 3 describes implementations of compilers
and optimizers in the polyhedral domain since its inception
in the 1960s to the present day. Sec. 4 shows a top-down
view of our compiler and an abstract look at how it trans-
forms kernels. Sec. 5 shows specific implementation de-
tails, including how it was programmed, the different tools
involved, what data is communicated and translated, and
more. Sec. 6 depicts the results of the compiler on a col-
lection of short kernels and shows how it compares with
sequential implementations and we conclude in Sec. 7.

2. Problem Statement
The basis of polyhedral compilation lies in structured, re-

strictive iteration. For a loop to be a candidate for optimiza-
tion, the bounds that the loop will traverse must be known
before it is entered. Generally speaking, the compilation
process identifies Static Control Parts (SCoP) that feature
consecutive instructions with the only allowable control
structures being either for-loops or if-statements. Func-
tions are allowed only if they are purely functional, meaning
they do not have any side effects and will always yield the
same outputs given the same set of inputs. Both scientific
and signal-processing applications feature many SCoP that
match this description [18], an example of which is shown
in algorithm 1. The result of these restrictions is the ability
to represent SCoP algebraically.

SCoP are optimized best by the polyhedral model if they
take the form of systolic operations, with values from one it-
eration feeding directly into the next. Algorithm 1 matches
this description, and its index space and dependency graph
is given in figure 1 to demonstrate this. The algorithm can-
not be simply parallelized on a single axis due to the inner-
loop changing values that are needed across iterations; alog-
ithms which are parallelizable across a loop axis would fea-
ture only horizontal or vertical lines in their dependency

Algorithm 1 SCoP pseudocode

Require: n, a[n], b[n], c[n]
1: for i← 0, n do
2: for j ← n, 0 do
3: if i == 0 ∥ j == n then
4: c[i+ j]← a[i]× b[j] ▷ S1
5: else
6: c[i+ j]← c[i+ j] + a[i]× b[j] ▷ S2
7: end if
8: end for
9: end for

Figure 1. Index space (left) and dependency graph (right) of algo-
rithm 1.

graph, like matrix multiplication or 2D convolution.
Once a SCoP is identified, algebraic features can be ex-

tracted from it. The first is the iteration domain–a collec-
tion of integral points that a loop visits–which is the basis
for representing an index space. For algorithm 1, this would
be:

{D ∈ Z2|0 ≤ i ≤ n ∥ 0 ≤ j ≤ n}

It is important to note that polyhedral optimization only
works on affine expressions, which are the result of a skew
and a translation on the original set. As such, functions
are not allowed as the iterator or condition in target for-
loops, except for the special integral functions min, max,
ceil, and floor. An iteration domain whose condition,
iterator, and shape match these descriptions is known as a
Z-polyhedron.

The ultimate goal is to shift the iteration domain so that
the same points are visited but in a different order. The
final dependency graph for algorithm 1 should be com-
pletely vertical or horizontal, which means a single trans-
formed axis or loop could run in parallel, for instance by
adding a tag such as #pragma omp parallel for.
Other target polyhedral graphs could be obtained, such as
graphs that minimimize the local access scope of index
spaces rather than to maximize parallelism in order to sup-
port cache blocking, but this paper focuses specifically on
simple parallelism.



Figure 2. Abstract Syntax Tree (AST) for algorithm 1.

The iteration domain shown previously does not spec-
ify an ordering of the points, which is shown by the itera-
tors for i and j looking similar despite iterating in opposite
directions. To remedy this, a scattering is created that at-
taches an ordering to each individual statement as a func-
tion of the iterators. Scatterings yield a vector such that the
statement instance that runs first precedes those that come
later based on a lexicographic order. A simple range-based
for-loop would have a single-dimensional scattering created
from the loop’s iterator, but more complicated multidimen-
sional loops would likely require creative multidimensional
scattering functions. The main point of research among the
polyhedral community is finding optimal scattering func-
tions.

The easiest way to create a scattering that properly rep-
resents the original program is to use the program’s abstract
syntax tree (AST). For algorithm 1, this would look like fig-
ure 2. A statement’s scattering vector is obtained by travers-
ing the tree: for instance, S2’s scattering vector would be
“0i0j1”. AST’s were used as a test for our implementa-
tion to see if scattering generation worked and their imple-
mentation is described in section 5, but they do not yield
new transformations. To generate optimal code, scatterings
need to be found algebraically.

Scattering functions are not concretely defined in any
code sense, and they reflect abstract ideas of ordering more
than they represent manifestations of computation concepts
like parallelism and blocking. Two common terms used
to characterize scatterings are schedules (scatterings which
give each statement instance an “execution date”) and al-
locations (scatterings which divide statements among pro-
cessors). A scattering which combines schedules and al-
locations is a space-time mapping, and is the focus of this
paper.

Once these items are determined, they can be trans-
lated into different forms for easy manipulation. Iteration
domains are essentially a set of inequalities that define a
traversal bounds, so they can in turn become domain matri-
ces, where algorithm 1’s relational set and domain matrix is

shown below.
i ≥ 0

−i+ n ≥ 0

j ≥ 0

−j + n ≥ 0

⇐⇒


1 0 0 0
−1 0 1 0
0 1 0 0
0 −1 1 0




i
j
n
1

 ≥

0
0
0
0


Since scattering functions naturally yield vectors, they can
interface neatly with iteration domains. Although, the typ-
ical method for generating a scattering matrix, or transfor-
mation as its referred to throughout this paper, can become
very complex. The common method is to apply the affine
form of the Farkas Lemma [21] to yield special multipliers,
then create a dependence matrix from another set of rela-
tions with the multipliers as unknowns, and iteratively sat-
isfying relations until a collection of valid transformations
can be obtained [18].

The final step in the compilation process is to translate
a source program with a computed transformation into a
new representation. The transformation should essentially
be an affine expression applied to the original statements,
shifting loop bounds or creating new loops when necessary,
and can be performed automatically with specialized tools.
The result of this process is a source-to-source compiler that
takes inefficient systolic loops and removes the dependen-
cies that occur between iterations to allow for potentially
massive performance gains.

3. Related Work
The polyhedral model was originally outlined in [11],

which described how uniform recurrence equations created
from the dependency graph of lattice points in geometric
space can be scheduled in parallel. The idea was first ap-
plied to the domain of compilation in [13], implementing
the hyperplane method–where hyperplanes describe edges
of the polytope or iteration domain–for Fortran and Algol
compilers.

The concept of systolic arrays as a hardware optimiza-
tion was developed in [12] and several additional contribu-
tions came after, with [16] mapping cyclic loop algorithms
to VLSI systems, [9] representing array computation as ge-
ometric and using linear transformations to change their
shape, [15] embedding space-time computation graphs with
dependency graphs to map systolic arrays to physical ar-
rays, and [19] recognizing the need for finding schedule and
allocation scatterings that map one iteration domain to an-
other to create a fully-automated translation method. Each
of these papers and more are organized in [20] for applying
the method in signal processing, graph theory, numerical
linear algebra, and other domains.

Several more seminal papers influenced our efforts. [14]
gives an overview of the polyhedral model from a theoreti-
cal and practical standpoint, and compiles together much of



the introductory material for the polyhedral domain. [18]
and [17] show how to iteratively create candidate one-
dimensional and two-dimensional scatterings, respectively,
and how the scatterings can yield a traversable search-space
of candidate optimizations. [2] brings the polyhedral do-
main to the GPU and optimizes affine loop nests represented
in CUDA code. [22] and [1] use the polyhedral representa-
tion to improve tensor operator scheduling for deep learning
systems on GPUs and other accelerators.

There are many tools available that are designed for
polyhedral compilation specifically, several of which are
used as core parts of our compiler’s pipeline. OpenScop
[5, 7] is a specification of data structures meant to unify all
other polyhedral tools, and an included API gives ways of
representing SCoP, iteration domains and polyhedra, scat-
tering relations, and transformation matrices. Clan [6, 8]
gives a few methods for scraping the polyhedral sections
from a given source code file and turning it into OpenScop
data structures. CLooG [3, 4] is a code generator that takes
SCoP and scatterings to yield equivalent C or Fortran code,
and is used to create the resulting transformed code after
optimization.

Other papers that are not strictly related to polyhedral
compilation but were still necessary for creating this paper
include the TVM deep-learning compiler [10], which lets
users define abstract requirements for deep-learning mod-
ules in order to create a search-space that is traversed on
hardware to choose an optimal compiled output, and [23],
which describes bottlenecks for graph applications on GPU
systems and gives a helpful methodology for identifying ar-
eas for improvement in software domains. While this paper
is about simple array-based polyhedral compilation on the
CPU, taking inspiration from other sources like these was
necessary to complete the project.

4. Proposed Method
The main difficulty of our implementation was follow-

ing along with the math described in previous work. Many
papers are involved with scattering-generation in the poly-
hedral model, but few of these approaches define the com-
putation in terms of concrete operations. Steps are instead
described through lemmas, axioms, relations, and equations
involving abstract symbols; without a working prototype to
view the concrete details of, it was difficult for us to make
sense of the real inner-workings of the approaches on a non-
theoretical basis. As such, due to time constraints, we in-
stead opted for a different approach for transformation cre-
ation.

Since scatterings are easily defined in terms of systems
of inequalities, and furthermore as matrices of limited size
with values of definite bounds, we can perform a ran-
dom search of naively generated candidate transformations
without performing the “provably-correct” approaches. Al-

though, the size of the search spaces grows exponentially
with program size leading to a combinatorial explosion of
viable searches, only few of which are semantically correct.
Coupled with our desire for automatic parallelization, this
leads to a compiler which is not guaranteed to produce a
correct, efficient program output in any reasonable amount
of time. Regardless, it was the most viable solution to our
project constraints, so we will leave a deterministic solution
up to future work. A complete pipeline of our approach
is shown in figure 3. Our compiler is essentially a wrap-
per to the GCC compiler. It takes source code with added
#pragma statements with other files, applies transforma-
tions where applicable, and forwards the result to GCC.

The user should edit their source code to indicate ar-
eas they want to have parallelized through the polyhedral
model, shown in listing 1. These sections must repre-
sent SCoP, which incurs the limitations of loop iteration
and boundings, but users should also specify a setup and
teardown subsection. Our compiler will test if a gen-
erated transformation is viable by creating and executing
only the polyhedral code, with the number of tests executed
on any transformation equal to the value specified in the
#pragma polyhedral header’s test argument. This
shortened test file will contain the setup and teardown
code, which generates dummy variables for the optimized
code to operate on. The teardown section should also in-
clude a float output, giving a simple way for the compiler
to tell if a transformed program is semantically equivalent
to the “baseline” unoptimized program. This entire polyhe-
dral section is embedded directly within the code of a user’s
program; in this case, the matrix multiplication algorithm
specified (between #pragma endsetup and #pragma
teardown) was originally in a program’s main method.

First, the compiler scans through each input file for
sections marked for polyhedral compilation, and extracts
header values and sub-sections (including setup, body,
and teardown), from each area, raising compilation er-
rors whenever missing or unexpected tokens are detected.
Drivers and stubs are created as well: optimized code will
be placed in their own function, and test-cases will be gen-
erated with only a main method and the polyhedral code.
This also requires adding #include and #define direc-
tories and function declarations to the test-case basis when
applicable. Identifiers must be renamed in certain cases–
like with preprocessor directives defining constant values,
which disallows using those same definitions as the names
of parameters–so mappings are created.

Next, an abstract syntax tree is obtained from polyhedral
bodies. This is used as a scattering for the baseline config-
uration, since an AST scattering is guaranteed to return the
original code after code transformation through CLooG.

Afterwards, the polyhedral body is translated into an
OpenScop representation through Clan. Although, Clan has



Figure 3. Proposed polyhedral compiler pipeline.

a limitation in that it can only parse code that (1) comes
from a file, and (2) is surrounded by special #pragma
scop headers, which requires more preprocessing. This
generates a unified object containing statement mappings
used by CLooG for re-translation and scattering stubs we
can edit to represent transformations. An example output of
the translation process for a Gaussian elimination kernel is
shown in appendix B.

Now we can proceed to the main contribution of our
work with transformation generation. At this point, Clan re-
turned a stub for scattering inequality relations which can be
forwarded to CLooG for code generation. These relations
are better visualized as a matrix, and the dimensionality of
the matrix can be user-defined. For simplicity, we make our
matrix have the same dimensions as the longest statement
path in the baseline AST, which makes testing easy as the
baseline’s transformation matrix is the same dimensionality
of all other tests.

As mentioned previously, the transformation matrix is
an abstract concept not concretely defined in terms of code
generation. As such, without a proper mathematical per-
spective to view the values through, we resorted to identify-
ing certain patterns in their representation. Matrix rows cor-
responded to coefficients to target iterators, array accessors,
and conditional bounds, and all programs used between 5
and 8 coefficients. An example of this can be seen in ap-
pendix B. We noticed the following patterns held:

1. Matrix values needed to be integers in the set x ∈
{−1, 0, 1}. Values which were not in this set never
generated valid transformations.

2. At least one value in each column needed to be non-
zero.

3. High-entropy matrices (with lots of values set to non-
zero numbers) tended to result in unpredictable pro-
grams with extreme outputs, while low-entropy matri-
ces were usually invalid.

We use these patterns as a basis for generating our
own matrices while forming our search space. Addition-
ally, to automatically parallelize the final program, we
add #pragma omp parallel for to random gener-
ated loop statements. Since we cannot know if a loop axis
is truly independent of other iterations, the random place-
ment of parallel indicators would need to suffice.

Our compiler continuously generates candidate transfor-
mations and tests them in short code segments by placing
them in new temporary files with the preprocessor direc-
tives and header fields obtained in an earlier stage. After
creating a test, it is passed through GCC, executed a num-
ber of times, and its returned results are compared with the
baseline. If the program outputs are always equivalent to the
baseline’s then it is considered to be semantically equivalent
and it is stored; otherwise, it is removed.

The user passes their source code files through our com-
piler just as they would with GCC, and they specify ar-
guments that determine how many tests to execute and
whether or not to clean temporary intermediate files. Once
the search concludes, the list of semantically-correct pro-
grams is searched and the one with the best performance is
passed along to GCC for final compilation.

5. Implementation

The main difficulty of the project was learning every tool
and connecting them together. The tools presuppose that
programmers have a high knowledge of polyhedral com-
pilation already, but they come equipped with a Doxygen
interface for exploring the code. Besides this, there are
three main areas the implementation focused that will be
described: I/O, transformation organization, and transfor-
mation checking.

5.1. I/O

The I/O module aimed to both extract relevant features
from C-source inputs and to output organized represen-



Listing 1. Example code input to polyhedral compiler featuring
matrix multiplication.

#pragma p o l y h e d r a l \
a r r a y ( f l o a t ** a , f l o a t ** b , f l o a t ** c ) \
i t e r ( i n t i , i n t j , i n t k ) \
g l o b a l ( i n t N) t e s t ( 5 )

{
# pragma s e t u p
s r a n d ( 1 3 ) ;
f l o a t a [N] [N ] ;
f l o a t c [N] [N ] ;
f o r ( i n t i = 0 ; i < N; i ++) {

f o r ( i n t j = 0 ; j < N; j ++) {
a [ i ] [ j ] = ( f l o a t ) r and ( ) /

( f l o a t ) (RAND MAX / 1 0 ) ;
c [ i ] [ j ] = ( f l o a t ) r and ( ) /

( f l o a t ) (RAND MAX / 1 0 ) ;
}

}
# pragma e n d s e t u p

f o r ( i n t i = 0 ; i < N; i ++) {
f o r ( i n t j = 0 ; j < N; j ++) {

c [ i ] [ j ] = 0 ;
f o r ( i n t k = 0 ; k < N; k ++) {

c [ i ] [ j ] += a [ i ] [ k ] * b [ k ] [ j ] ;
}

}
}

# pragma tea rdown
f l o a t norm = 0 ;
f o r ( i n t i = 0 ; i < N; i ++) {

f o r ( i n t j = 0 ; j < N; j ++) {
norm += c [ i ] [ j ] ;

}
}
p r i n t f ( ”%f ” , norm ) ;
# pragma end tea rdown

}
#pragma e n d p o l y h e d r a l

tations of the polyhedral model. This included parsing
the AST from the polyhedral body and outputting test se-
quences from a given transformation.

The AST performs a line-by-line reading of C source
code and generates a mapping of the relationships between
containers and their contained values (e.g., loop statements
and their associated blocks). In order to simplify the parsing
process, Clang was originally used as a backend for pars-
ing programs for their AST, but we ran into a number of
difficulties in parsing program segments as opposed to full
source files and in handling #pragma statements. As such,
we perform a manual reading of the input string in plain C

instead.
An example of the output of the AST module is shown

in figure 4. With it generated, a path is collected from the
root node to each statement, and the size of each statement’s
transformation matrix is normalized to the largest AST path.
For example, statement S3’s path would be “0i2j0k0”.

Once created, each statement can fill in their respective
matrices according to the path sequence. An example of
S3’s transformation matrix is:

S1(i, j)

S2(i)

S3(i, j, k)

S4(i, j)

= (0, i, 0, j, 0, 0, 0)

= (0, i, 1, 0, 0, 0, 0)

= (0, i, 2, j, 0, k, 0)

= (0, i, 2, j, 1, 0, 0)



eq p1 p2 p3 p4 p5 p6 p7 i j k n 1
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 −2
0 0 0 0 1 0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0


Since matrices can be visualized as collections of linear

relations, we assign a diagonal of values corresponding to
iteration multipliers and match their associated mapped pa-
rameters (e.g., iterators i, j, and k; global parameter n; and
constant 1).

5.2. Transformation Organization

AST’s form the basis of transformation generation, as all
transformations build off it as a starting point. The baseline
configuration without any transformation is a special case
where no modification is performed to the matrix, but all
other tests modify their matrix in a random way following
the patterns denoted earlier.

At compilation time, the user specifies how many tests
to search through and how many executions to perform for
each test in order to confirm an optimization is semantically
correct. For transformation generation, random values are
seeded with each test’s index. This has a benefit for allow-
ing us to store only the seed of tests that produce viable re-
sults, since the seed is all that is needed in order to recreate
an optimized kernel.

Along with needing random numbers to fill in transfor-
mation matrices, more random numbers are required to in-
dicate which loops in the generated code should run in par-
allel. Since we are unable to check if a loop contains code
that can run independent of other iterations, the random
values ensure that at least a fraction of properly-optimized
kernels can become automatically parallelized without wor-
rying about (1) completely removing multithreading or (2)
parallelizing a loop with inter-iteration dependencies.



Figure 4. Example AST for a Cholesky factorization kernel.

5.3. Transformation Checking

The random nature of our searching procedure in regards
to the size of transformation matrices and output code size
leads to a combinatorial explosion, which is why typical
polyhedral compilers employ deterministic approaches to
generate output code that is sure to be semantically cor-
rect. For instance, if a typical program has three iterators,
one global variable, and a constant field, all with a longest-
path AST that is 8 statements long, then this leads to a ma-
trix with pathlongest × (niterator + nglobal + nconstant) =
8 × (3 + 1 + 1) = 40 values to set. Furthermore, if we
follow our aforementioned pattern to assign a random inte-
ger value x ∈ {−1, 0, 1} to each matrix element, then there
would be 3size = 340 = 1.2 × 1019 possible combinations
of matrices.

In addition, not all of these matrices are valid. We have
already discussed the problem of generating semantically
incorrect code–fixed by having polyhedral test code return a
single value to denote the “correctness” of an execution–but
CLooG may yield a segmentation fault when given certain
matrices. The reasons for these faults are likely due to the
contents of the matrix itself, as CLooG may not be capable
of generating output code for a transformation that is com-
pletely incorrect. To fix this, we changed CLooG’s source
code and added a short error-checking routine before output
code is generated that scans their internal AST data struc-
ture for iteration variables which are NULL.

This fixes the issue most of the time, but certain cases
may still result in segmentation faults. As a final resort, we
created a bash script that acts as a wrapper to our compiler;
in the case of a segmentation fault, it restarts the test rou-
tine to the index succeeding the failed case. This fixes any
issues we received, and allowed the compilation process to
continue without interruption.

6. Performance Evaluation

Our excessive usage of random values has some benefits
in that it allows us to traverse a search space without requir-
ing complex algebra to do so, but it results in a compiler that
takes very long to run, is not guaranteed to converge, and
will not always generate semantically correct code output.
As such, the results of our compilation tests are volatile.

We tested our compiler on three input kernels: matrix
multiplication, Cholesky factorization, and Gaussian elimi-
nation. The results are shown in table 1, along with the size
of the kernel in lines of code, the runtime of the baseline,
the runtime of the best result, and how many tests were re-
quired to get the best result. Each baseline ran sequentially
with no OpenMP calls, while the resulting kernels possi-
bly contained parallel loops. Programs were executed on
a 2.30GHz Intel i7 CPU. Also, GCC had no optimization
flags enabled in any case, as to demonstrate the performance
benefits from polyhedral optimization only.

A consequence of our method was the length of time re-
quired to generate valid tests. Most tests were completely
invalid: Cholesky factorization and Gaussian elimination
only had around 10 semantically-valid generated kernels
out of 10,000 attempts. We attempted to implement a pro-
cedure to improve this by reducing the problem size of in-
put kernels, since large problem sizes (e.g., input matrix
sizes for matrix-multiplication) lead to noticeable time dif-
ferences between unoptimized and optimized code but over-
all slower execution. Our procedure replaces global defini-
tions with smaller values in order to generate a set of kernels
that lead to semantically-correct results, and then re-runs
this culled set on the original problem size to get better tim-
ing statistics, which is the approach we used to run more
tests in a short amount of time.

It is important to note that our matrix-generation method



Kernel Size (LOC) Baseline time (s) Optimized time (s) Tests performed
Matrix Multiplication 5 0.381 0.310 1,510
Cholesky Factorization 8 0.462 0.295 10,572
Gaussian Elimination 5 0.489 0.554 12,143

Table 1. Execution results for each compiled kernel.

will lead to optimized kernels eventually. Our culled-pattern
approach of generating specific values within the range
x ∈ {−1, 0, 1} could be changed for a larger range if ap-
plicable, and we could entirely remove the restrictions that
all columns of the relation matrix must have at least one
nonzero value within it. This would guarantee our results
eventually converge with existing techniques, but at the
cost of navigating more search transformations than feasi-
bly possible.

An example of optimized code outputted from our poly-
hedral compiler is given in appendix A.

7. Conclusion

The polyhedral model can be used to remove inter-
iteration dependencies, allowing an axis of a multidimen-
sional loop to be parallelized. Although making an au-
tomatic parallelizer through the polyhedral model requires
proficient understanding of abstract linear algebra, we cre-
ated a source-to-source compiler that randomly generates
candidate transformation matrices, runs each resulting test,
and selects the highest-performing optimized kernel auto-
matically. While our results do not indicate that a random
search of transformation matrices would lead to an efficient
or correct compiler, we hope to develop our understanding
of compilers more in the future through similar projects.

References
[1] R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse,

C. Reddy, S. Verdoolaege, A. Betts, A. F. Donaldson, J.
Ketema, J. Absar, S.V. Haastregt, A. Kravets, A. Lokhmotov,
R. David, and E. Hajiyev. Pencil: A platform-neutral com-
pute intermediate language for accelerator programming. In-
ternational Conference on Parallel Architecture and Compi-
lation Techniques (PACT), pages 138–149. 4

[2] M.M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ra-
manujam, A. Rountev, and P. Sadayappan. A compiler
framework for optimization of affine loop nests for gpgpus.
Proceedings of the 22nd Annual International Conference on
Supercomputing (ICS’08), pages 225–234, 2008. 4

[3] C. Bastoul. Code generation in the polyhedral model is easier
than you think. IEEE International Conference on Parallel
Architecture and Compilation Techniques (PACT’13), pages
7–16, 2004. 4

[4] C. Bastoul. Cloog documentation, 2007. 4, 9

[5] C. Bastoul. Openscop: A specification and a library for data
exchange in polyhedral compilation tools. 2011. 4

[6] C. Bastoul. Clan documentation, 2014. 4
[7] C. Bastoul. Openscop documentation, 2014. 4
[8] C. Bastoul, A. Cohen, S. Girbal, S. Sharma, and O. Temam.

Putting polyhedral loop transformations to work. Interna-
tional Workshop on Languages and Compilers for Parallel
Computers (LCPC’16), pages 209–225, 2003. 4

[9] P.R. Cappello and K. Steiglitz. Unifying vlsi array designs
with geometric transformations. International Conference
on Parallel Processing (ICPP’83), 1983. 3

[10] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen,
M. Cowan, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A.
Krishnamurthy. Tvm: An automated end-to-end optimizing
compiler for deep learning. USEIX Symposium on Operating
Systems Design and Implementation (OSDI’18), 2018. 4

[11] R.M. Karp, R.E. Miller, and S. Winograd. The organization
of computations for uniform recurrence equations. Journal
of the ACM, 1967. 3

[12] H.T. Kung and C. E. Leiserson. Algorithms for vlsi processor
arrays. Addison-Wesley, pages 245–282, 1978. 1, 3

[13] L. Lamport. The parallel execution of do loops. Communi-
cations of the ACM, 1974. 3

[14] C. Lengauer. Loop parallelization in the polytope model.
4th International Conference on Concurrency Theory (CON-
CUR’93), pages 398–416, 1993. 3

[15] W. M. Miranker and A. Winkler. Spacetime representations
of computational structures. Computing, 2:93–114, 1984. 3

[16] D.I. Moldovan. On the design of algorithms for vlsi systolic
arrays. Proceedings of the IEEE, 71(1), 1983. 3

[17] L.N. Pouchet, C. Bastoul, A. Cohen, and J. Cavanos. It-
erative optimization in the polyhedral model: Part ii, two-
dimensional time. ACM SIGPLAN Notices, 2008. 4

[18] L.N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. It-
erative optimization in the polyhedral model: Part i, one-
dimensional time. IEEE/ACM International Symposium on
Code Generation and Optimization (CGO’07), 2007. 2, 3, 4

[19] P. Quinton. Automatic synthesis of systolic arrays from
uniform recurrent equations. Proceedings of the 11th An-
nual International Symposium on Computer Architecture
(ISCA’84), pages 208–214, 1984. 3

[20] S.K. Rao. Regular iterative algorithms and their implemen-
tations on processor arrays. Ph.D. Thesis, 1986. 3

[21] A. Schrijver. Theory of linear and integer programming.
John Wiley & Sons, 1986. 3

[22] S. Verdoolaege, J.C. Juega, A. Cohen, J.I. Gomez, C. Teni-
lado, and F. Catthoor. Polyhedral parallel code generation



for cuda. ACM Transactions on Architecture and Code Opti-
mization, 9(4):1–23, 2013. 4

[23] Q. Xu, H. Jeon, and M. Annavaram. Graph processing on
gpus: Where are the bottlenecks? IEEE International Sym-
posium on Workload Characterization (IISWC), 2014. 4

A. Optimized Polyhedral Code
Our initial tests revolved around replicating the results

found in the CLooG documentation [4], so our compiler is
biased around generating transformation matrices that are
similar to the one they provide as an example. The original
unoptimized Gaussian elimination kernel is shown in listing
2, and the optimized version is given in listing 3.

Listing 2. Gaussian elimination baseline kernel

f o r ( i n t i = 0 ; i < N; i ++) {
f o r ( i n t j = i + 1 ; j <= N; j ++) {

c [ i ] [ j ] = a [ j ] [ i ] / a [ i ] [ i ] ;
f o r ( i n t k = i + 1 ; k <= N; k ++) {

a [ j ] [ k ] −= c [ i ] [ j ] * a [ i ] [ k ]
}

}
}

Listing 3. Gaussian elimination kernel optimized through polyhe-
dral compiler

i f ( n >= 2) {
f o r ( i n t b2 = 2 ; b2 <= n ; b2 ++) {

c [ 1 ] [ b2 ] = a [ b2 ] [ 1 ] / a [ 1 ] [ 1 ] ;
}

}
#pragma omp p a r a l l e l f o r
f o r ( i n t b0 = 2 ; b0 <= n − 1 ; b0 ++) {

f o r ( i n t b1 = 1 ; b1 <= b0 − 1 ; b1 ++) {
f o r ( i n t b2 = b1 + 1 ; b2 <= n ; b2 ++) {

a [ b2 ] [ b0 ] −= c [ b1 ] [ b2 ] * a [ b1 ] [ b0 ] ;
}

}
f o r ( i n t b2 = b0 + 1 ; b2 <= n ; b2 ++) {

c [ b0 ] [ b2 ] = a [ b2 ] [ b0 ] / a [ b0 ] [ b0 ] ;
}
i f ( n >= 2) {

f o r ( i n t b1 = 1 ; b1 <= n − 1 ; b1 ++) {
f o r ( i n t b2 = b1 + 1 ; b2 <= n ; b2 ++) {

a [ b2 ] [ n ] −= c [ b1 ] [ b2 ] * a [ b1 ] [ n ] ;
}

}
}

}

B. OpenScop Output
Listing 4 shows the format that the polyhedral tools used

in this project communicate in. Of particular interest are
the Scattering section showing the different relations and

iteration parameters, and the fact that each statement has its
own unique scattering.

Listing 4. OpenScop output generated via Clan from a source-code
file containing Gaussian elimination.
# [ F i l e g e n e r a t e d by t h e OpenScop L i b r a r y 0 . 9 . 5 ]

<OpenScop>

# =============================================== Gl ob a l
# Language
C

# C o n t e x t
CONTEXT
0 3 0 0 0 1

# P a r a m e t e r s a r e p r o v i d e d
1
<s t r i n g s>
N
</ s t r i n g s>

# Number o f s t a t e m e n t s
2

# =============================================== S t a t e m e n t 1
# Number o f r e l a t i o n s d e s c r i b i n g t h e s t a t e m e n t :
5

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 . 1 Domain
DOMAIN
5 5 2 0 0 1
# e / i | i j | N | 1

1 1 0 0 0 ## i >= 0
1 −1 0 1 −2 ## − i +N−2 >= 0
1 0 0 1 −2 ## N−2 >= 0
1 −1 1 0 −1 ## − i + j −1 >= 0
1 0 −1 1 −1 ## − j +N−1 >= 0

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 . 2 S c a t t e r i n g
SCATTERING
5 10 5 2 0 1
# e / i | c1 c2 c3 c4 c5 | i j | N | 1

0 −1 0 0 0 0 0 0 0 0 ## c1 == 0
0 0 −1 0 0 0 1 0 0 0 ## c2 == i
0 0 0 −1 0 0 0 0 0 0 ## c3 == 0
0 0 0 0 −1 0 0 1 0 0 ## c4 == j
0 0 0 0 0 −1 0 0 0 0 ## c5 == 0

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 . 3 Access
WRITE
3 8 3 2 0 1
# e / i | Arr [ 1 ] [ 2 ] | i j | N | 1

0 −1 0 0 0 0 0 4 ## Arr == c
0 0 −1 0 1 0 0 0 ## [ 1 ] == i
0 0 0 −1 0 1 0 0 ## [ 2 ] == j

READ
3 8 3 2 0 1
# e / i | Arr [ 1 ] [ 2 ] | i j | N | 1

0 −1 0 0 0 0 0 5 ## Arr == a
0 0 −1 0 0 1 0 0 ## [ 1 ] == j
0 0 0 −1 1 0 0 0 ## [ 2 ] == i

READ
3 8 3 2 0 1
# e / i | Arr [ 1 ] [ 2 ] | i j | N | 1

0 −1 0 0 0 0 0 5 ## Arr == a
0 0 −1 0 1 0 0 0 ## [ 1 ] == i
0 0 0 −1 1 0 0 0 ## [ 2 ] == i

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 1 . 4 S t a t e m e n t E x t e n s i o n s
# Number o f S t a t e m e n t E x t e n s i o n s
1
<body>
# Number o f o r i g i n a l i t e r a t o r s
2
# L i s t o f o r i g i n a l i t e r a t o r s
i j
# S t a t e m e n t body e x p r e s s i o n
c [ i ] [ j ] = a [ j ] [ i ] / a [ i ] [ i ] ;
</body>

# =============================================== S t a t e m e n t 2
# Number o f r e l a t i o n s d e s c r i b i n g t h e s t a t e m e n t :
6

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 2 . 1 Domain
DOMAIN
7 6 3 0 0 1
# e / i | i j k | N | 1

1 1 0 0 0 0 ## i >= 0
1 −1 0 0 1 −2 ## − i +N−2 >= 0
1 0 0 0 1 −2 ## N−2 >= 0
1 −1 1 0 0 −1 ## − i + j −1 >= 0
1 0 −1 0 1 −1 ## − j +N−1 >= 0
1 −1 0 1 0 −1 ## − i +k−1 >= 0
1 0 0 −1 1 −1 ## −k+N−1 >= 0

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 2 . 2 S c a t t e r i n g
SCATTERING



7 13 7 3 0 1
# e / i | c1 c2 c3 c4 c5 c6 c7 | i j k | N | 1

0 −1 0 0 0 0 0 0 0 0 0 0 0 ## c1 == 0
0 0 −1 0 0 0 0 0 1 0 0 0 0 ## c2 == i
0 0 0 −1 0 0 0 0 0 0 0 0 0 ## c3 == 0
0 0 0 0 −1 0 0 0 0 1 0 0 0 ## c4 == j
0 0 0 0 0 −1 0 0 0 0 0 0 1 ## c5 == 1
0 0 0 0 0 0 −1 0 0 0 1 0 0 ## c6 == k
0 0 0 0 0 0 0 −1 0 0 0 0 0 ## c7 == 0

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 2 . 3 Access
READ
3 9 3 3 0 1
# e / i | Arr [ 1 ] [ 2 ] | i j k | N | 1

0 −1 0 0 0 0 0 0 5 ## Arr == a
0 0 −1 0 0 1 0 0 0 ## [ 1 ] == j
0 0 0 −1 0 0 1 0 0 ## [ 2 ] == k

WRITE
3 9 3 3 0 1
# e / i | Arr [ 1 ] [ 2 ] | i j k | N | 1

0 −1 0 0 0 0 0 0 5 ## Arr == a
0 0 −1 0 0 1 0 0 0 ## [ 1 ] == j
0 0 0 −1 0 0 1 0 0 ## [ 2 ] == k

READ
3 9 3 3 0 1
# e / i | Arr [ 1 ] [ 2 ] | i j k | N | 1

0 −1 0 0 0 0 0 0 4 ## Arr == c
0 0 −1 0 1 0 0 0 0 ## [ 1 ] == i
0 0 0 −1 0 1 0 0 0 ## [ 2 ] == j

READ
3 9 3 3 0 1
# e / i | Arr [ 1 ] [ 2 ] | i j k | N | 1

0 −1 0 0 0 0 0 0 5 ## Arr == a
0 0 −1 0 1 0 0 0 0 ## [ 1 ] == i
0 0 0 −1 0 0 1 0 0 ## [ 2 ] == k

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 2 . 4 S t a t e m e n t E x t e n s i o n s
# Number o f S t a t e m e n t E x t e n s i o n s
1
<body>
# Number o f o r i g i n a l i t e r a t o r s
3
# L i s t o f o r i g i n a l i t e r a t o r s
i j k
# S t a t e m e n t body e x p r e s s i o n
a [ j ] [ k ] −= c [ i ] [ j ] * a [ i ] [ k ] ;
</body>

# =============================================== E x t e n s i o n s
<sca tnames>
b0 i b1 j b2 k b3
</s ca tnames>

<a r r a y s>
# Number o f a r r a y s
6
# Mapping a r r a y − i d e n t i f i e r s / a r r a y −names
1 i
2 N
3 j
4 c
5 a
6 k
</a r r a y s>

<c o o r d i n a t e s>
# F i l e name
/ tmp / tmp . bW0YPvqFx4 . c
# S t a r t i n g l i n e and column
20 0
# Ending l i n e and column
30 0
# I n d e n t a t i o n
8
</ c o o r d i n a t e s>

</OpenScop>


	. Introduction
	. Problem Statement
	. Related Work
	. Proposed Method
	. Implementation
	. I/O
	. Transformation Organization
	. Transformation Checking

	. Performance Evaluation
	. Conclusion
	. Optimized Polyhedral Code
	. OpenScop Output

