Neural Turing Machines: Programming Language

Justin Garrigus
University of North Texas
Department of Computer Science and Engineering

justingarrigus@my.unt.edu

Abstract

Standard deep learning models learn transformations on
data that reduce complex but abstract representations of a
problem into simple, separable categories. Recurrent neu-
ral networks (RNNs) process sequences of data with respect
to time in such a way that inputs at one time step could mod-
ify outputs at a much later time step. Long short-term mem-
ory (LSTM) is one of the most popular forms of RNN, but
it has limitations at generalizing operations when given in-
puts that exceed the length for which it was trained for. The
neural Turing machine (NTM) model fixes this by combin-
ing a neural network with an external addressable memory
bank which the model can use to store intermediate data
while it focuses on learning a general algorithm instead of
a specific transformation, allowing it to generalize to much
longer inputs. This paper proposes distributing individual
tasks across a collection of discrete NTM units which are
combined through an NTM-controller. This is utilized to
create a novel programming language built entirely from
deep learning models: each line of a user program is passed
through an encoder-decoder to scrape arguments and a lin-
ear classifier to apply attention to a set of NTM units repre-
senting individual instructions. This work shows a pseudo-
curriculum learning approach that can used as a building
block to create fully differentiable computers.

1. Introduction

Traditional deep learning tasks focus on finding ways to
change the representation of data by iteratively extracting
features that identify aspects of an input in such a way that a
given example can be uniquely identified or separated from
other examples. Deep learning models are typically con-
structed from a collection of discrete components, where
recurrent networks involve cycles between components and
feedforward networks do not. Each component contains a
single operation that takes a matrix, vector, or scalar as in-
put, and modifies it in some way with parameters to yield
a transformed output. The goal of training the network is

to learn parameters that minimize a final cost function be-
tween training examples the network has seen and examples
the network expects to see in the future. Different meth-
ods are used during training to improve the model’s ability
to generalize across examples and to prevent models from
overfitting parameters to observed examples.

While usual deep learning tasks find representations of
data, the means by which data is operated on is usually
fixed. Training does not typically change the number of
operations being performed, and the order of operations
among data and the ways in which layers are connected are
constant. For example, training an image-classification net-
work like AlexNet simply consists of repeatedly applying
slight modifications to scalar constants used in dot-product
operations in order to improve the similarity between the
output of the network and a target vector. The ultimate goal
of this domain of network is to discover a purely-numerical
transformation on a collection of input values, but this has
limitations when it comes to generalizing. AlexNet would
perform very poorly if the resolution of the input image was
doubled without retraining, since the numerical transforma-
tions it was meant to express do not apply to larger images,
similar to how a graphical 2D to 3D projection matrix can-
not generalize to transforming higher-dimensional vectors
without reconstructing a new matrix entirely.

In this sense, an algorithm can be interpreted as a su-
perset of a transformation. Algorithms contain abstract in-
structions used to guide and generate transformations. A
sufficiently-complex algorithm could express the interrela-
tion between pixels on an image of any resolution by per-
haps defining rules to create transformations on a per-image
basis, which an architecture like AlexNet is incapable of do-
ing on its own.

The neural Turing machine (NTM) [1] is an example of
such an architecture that has the ability of learning algo-
rithms instead of transformations. This is expressed by the
fact it can generalize to much larger inputs than it has seen
during training: when given a simple task like copying in-
put values to an output stream, it performs equally well on
inputs of size 80 when it was only trained on inputs up to

size 20. Conversely, a standard LSTM network would de-
grade very quickly when it encounters inputs that are larger
than it had seen during training.

The original paper that introduces the NTM focused on
teaching the model fairly simple tasks, like copying data,
set-retrieval, and n-gram prediction. This paper expands
on previous work by introducing 8 new tasks, each deal-
ing with simple elementary operations on an input matrix
similar in concept to assembly instructions. Each task is
contained within its own NTM model, which are all con-
nected to an NTM controller. A programming language
is created that takes user-inputted strings, with strings con-
taining commands corresponding to individual NTM com-
ponents, which the controller accepts as input in order to
control the activations on its NTM components. The result-
ing model consists of 10 individually-trained sub-networks
that combine to form a simple interpreted programming en-
vironment.

The rest of the paper is organized as follows. Section 2
describes the background and related work in neural Tur-
ing machines, sequence-learning, and curriculum learning.
Section 3 details the proposed architecture. Section 4 gives
the datasets and metrics used to train and judge the perfor-
mance of each model. Section 5 discusses the implementa-
tion of each model and roadblocks that were solved. Section
6 provides experimental results in training and inference of
each model. Section 7 gives the conclusion.

2. Related Work

Recurrent neural networks (RNNs) [2] are Turing-
complete, meaning they are capable of solving any com-
putational problem [3]. Long short-term memory (LSTM)
is the most popular method of implementing RNN, and it is
often used as a benchmark to compare sequence-processing
tasks against [4]. LSTMs contain stored variables alongside
weights, and use gates to control both the flow of data and
the memory contained within. Due to their internal memory
structure and shortcut connections, LSTMs are much better
at preserving time-dependent long-term data requirements
than traditional feedforward networks can, though this has
limitations when generalizing to inputs that far exceed their
training examples. Furthermore, in the context of modern-
day computers under the von Neumann architecture [5], an
LSTM could be visualized as a program containing small
stored variables like registers.

The neural Turing machine [1] fixes the shortcomings
of standard RNN networks by encouraging long-term con-
nections through an RNN controller accessing an external
addressable memory bank, depicted in Fig. 1. This allows
the controller to use their own stored variables to represent
algorithmic details instead of input features necessary for
transformation. NTMs are fully differentiable and end-to-
end trainable due to a fuzzy attentional mechanism on the

External Input External Output

N~

Controller

/7 N\

Read Heads Write Heads

P

Memory

Figure 1. Neural Turing Machine Architecture. The controller is
either a feedforward network or LSTM, and it processes the inputs
while modifying its memory bank with its write head. The output
of the network is generated from a linear layer connected to the
controller and the read head.

read and write heads. When the controller wants to access
memory, it must access all combined rows within its mem-
ory matrix at once, using a softmax probability distribution
to control which cells take priority.

Several other NTM variants have been proposed since
the original’s introduction in 2014. [6] extend the model to
support new tasks explicitly involving data structures like
binary trees and linked-lists, and use a more-sophisticated
”pointer” memory-addressing mode that remains fully-
differentiable. [7] removes the full-differentiability of the
model in order to improve performance by reducing mem-
ory accesses and utilize reinforcement learning to train on
simple tasks, and [8] further develops the model for reward-
based learning to succeed on maze-traversals. [9] introduce
the Lie-access neural Turing machine which improves on
the model’s ability to index memory cells relative in loca-
tion to each other through positional transformations like
shifts and rotations. [10] and [1] are both direct improve-
ments of the original paper, changing the organization of
recurrent connections and the addressing mechanism in or-
der to solve problems that can be visualized as relational
graphs like graph-traversals and question-answering.

Besides neural Turing machines, this paper focuses
on creating a programming interface using NTMs as in-
structions, alongside a feedforward network for classifi-
cation of instruction types [12] and an LSTM encoder-
decoder for scraping arguments from commands [13]. Us-
ing individually-trained submodels can be visualized as a
subset of curriculum learning [14], and training them jointly
or teaching them to utilize the same addressable memory
space like the typical von Neumann achitecture is a valid
area for future work.

\
{ Classifier

m
a
a
~
N
NTM Controller

~
\

'

Yan ™~
’[NTM (task: and)
A /

Y ™~
[NTM (task: or) \
- /

™
[NTM (task: inv)
L\ J

N

IR
/,[NTM (task: even) |}
RN

4

>

] N
NTM (task: odd) }— |
/

|

CN N O

NTM (task: add) ~ }—1"
/

™~
™ NTM (task: sub) |~
J/

™
\[/ NTM (task: mux)
A /

N s
\ { NTM (task: head)
A /

N\
{ NTM (task: tail)
A /

{ Parser |
J/

Figure 2. Architecture overview. A controller takes individual instructions as input, passing them to a classifier and a parser. The classifier
calculates attention on the NTM components, and the parser turns an optional parameter from the command into a vector.

3. Architecture Overview

The ultimate goal of the project was to make a fully-
differentiable interpreter of an input programming lan-
guage. Although the result is not end-to-end trainable, cer-
tain restrictions were taken to ensure that future conversion
into a differentiable model was possible.

The proposed model reinterprets “tasks” from the origi-
nal paper [1] as "instructions”, defining a discrete operation
on a matrix of data to yield a new matrix of data. Each
instruction is showed in table 2. Instructions are inputted
line-by-line into an NTM Controller, which contains a clas-
sifier and parser submodel. We imposed a challenge on our-
selves to require that the input commands be represented
as characters rather than pre-processed numbers: it is up to
the classifier and parser to recognize patterns between these
characters and to convert them into formats it can use.

The classifier is a simple feedforward network with n
hidden layers and m hidden units in each layer. It determines
an input and output attention for each NTM unit, where the
sum of each attention must equal 1. Since each instruc-
tion yields a matrix of the same dimensions, the matrices
can be pairwise-added together. The degree to which ma-
trices are accumulated is accomplished through a softmax
function which determines how much of a given NTM to

accumulate into the final resulting matrix. For example, an
input command add 72" should ideally lead to a classifi-
cation vector [0, ..., 0, 1, O, ..., 0], where
the 1 cooresponds to the index of the add NTM unit. The
classification vector is multiplied against each NTM output,
and the results are summed together and passed through a
sigmoid nonlinearity to yield the resulting matrix.

The parser scrapes the optional argument from the com-
mand input and returns a binary string. Each instruction
accepts an input matrix, but some instructions like add,
head, and mux require parameters to be placed in specific
rows or columns. The binary string returned from the parser
is passed to each NTM unit’s input, with some units ignor-
ing the input and some units copying it. We found that an
encoder-decoder LSTM model based on [15] with i hidden
layers and j hidden units in each layer works best for the
parser.

4. Datasets and Metrics

The output of the language interface depends entirely
on the performance of its sub-models. Therefore, the per-
formance of each sub-model will be reported individually.
This project does not rely on any external datasets, as all
tasks are essentially simple instructions that are easily gen-

Command Parameters

Description

Example (Input/Output)

add [0, 2width] Enables rows which align with the parameter mask,
ignores all other rows.

sub [0, 2width] Disables rows which align with the parameter
mask, ignores all other rows.

and None Enables columns only if all bits within an input col-
umn are enabled.

or None Enables columns only if they contain at least one
enabled bit within an input column.

even None Enables a column only if it contains an even num-
ber of enabled inputs.

odd None Enables a column only if it contains an odd number
of set inputs.

head [0,length] Copies n columns from the front, where 7 is a mask
in the last row.

tail [0, length] Copies n columns from the back, where 7 is a mask
in the last row.

inv None Flips (inverts) each bit in the input.

mux [0, width] Copies a single input row across all output rows,

given by a mask.

Table 1. List of instructions. Commands are in the format "command [param]” (e.g., add 173”), where the optional param falls
within a given range. For the Example column, the image to the left of the green divider represents the inputs, and the image to the right of
the green divider represents the outputs. Each output has the same dimension (in this case, 8x20), but inputs which contain parameters may
need to specify an additional row or column. The add, sub, and mux instructions include a parameter in the last column, with a separator
between the input stream and the parameter. The head and tail instructions include a parameter in the last row. The and, or, even,
odd, and inv instructions do not require parameters.

erated manually, and all commands follow a finite grammar.

4.1. NTM Tasks

Each task contains a generator function that produces
an input and expected output matrix. In order to improve
the performance of each NTM, the input matrices may not
come from a completely random distribution (i.e., the and
task must have a high probability of generating completely-
enabled columns in order for the model to learn to associate

these columns to enabled outputs, while the or task does
not have this same requirement).

Similarly, instructions with column-parameters like add
and mux require a delimiter bit to be placed on the second-
to-last column. Instructions with row-parameters like head
and tail do not require delimiter bits, as the parameter can
be passed directly into the final input row. Finally, the mux
task is unique in that proper semantics specify that only one
bit of the parameter column should be set; due to the net-

work consisting of only deep learning models, there is noth-
ing preventing the user from specifying more values to the
parameter channel, but this results in undefined behavior.

4.2. NTM Controller

In order to reduce the amount of required pre-processing
to the data (as too much pre-processing would negate
the novelty of the model), input commands are passed
to the two components of the NTM Controller and pro-
cessed individually. For both sub-models, a generator func-
tion retrieves a random command from the list of com-
mands, adds a random parameter if applicable, and con-
verts the string to a list of numbers (such that each char-
acter in the command corresponds to an index into a pre-
defined vocabulary). As such, a string like “add 727
with vocabulary ”?abcdefghijklmnopgrstuvwxyz
0123456789” may become [1, 4, 4, 27, 35,
30]. Due to the small scope of the language grammar, an
exhaustive list of input commands can be generated.

For this project, the classifier sub-model is a linear feed-
forward network with n hidden layers and m hidden units
in each layer. The parser sub-model is an LSTM encoder-
decoder with i hidden layers and j hidden units in each
layer. The exact values of n, m, i, and j are determined via
iterative optimization, detailed in section 5.

4.3. Metrics

Each sub-model is judged for performance using the
standard Cross Entropy Loss. The size of the datasets are
comparatively very small, and the bounds of the inputs are
ultimately known in advance, but this means that regulariza-
tion to unseen inputs is not an issue (for example, a perfect
parser component is possible if the LSTM learned to map
the different inputs directly to their associated outputs, with
no creative transformation required). A greater concern is
generalization to inputs of different lengths: the original
NTM paper [1] emphasized their ability to generalize to
inputs drastically larger than the model trained for, so we
follow this idea by focusing on performance as a factor of
input length as well.

5. Implementation

Our approach was implemented in PyTorch. In order to
reduce the optimization space and ensure that all models
have a chance to converge, early-stopping is applied to each
training regimen, detailed in Algorithm 1. The training pro-
cedure continues to traverse until the validation loss stops
improving over a set number of epochs. A goal (required)
validation loss is also specified such that the model will re-
peatedly attempt to improve itself (e.g., by increasing how
many hidden layers it contains) on validation stagnation un-
til its best validation loss is below the goal. Also, in this
method, no upper-limit to the epoch count is specified due

to tasks like mux which seem to stagnate over long stretches
of time before suddenly improving and converging to zero
loss.

Algorithm 1 Early-stopping to improve performance

Require: epochsiop > 0
Require: val,.q > 0 & valyeq <1
epoch;q: < 0
valpest < 0
valigy < 0
loop
Valerr — train_one_epoch()
if vale,r < valpes: then
Ualbest — Uale’r‘r
valige < epoch;g.
save_model()
else if epoch;q, — valig, > epochsio, then
if valery > valycq then
update_layer_con figuration()
retrain()
return
else
break
end if
end if
epochig, < epoch;g, + 1
end loop

5.1.NTM

The NTM portion extended an existing repository [16],
which attempted to follow the original paper [1] as close as
possible and managed to match the authors’ performance
on several tasks. The methodology of this section was as
follows: (1) implement data generators for each new task,
(2) define custom NTM model configurations to explore in
an automated search, and (3) leave the model training over
several nights until they converged. Since the NTM model
was adopted from an external repository, there were several
sub-optimal implementation details, the most important of
which was the fact the NTMs must be trained on the CPU
only. We attempted to transfer the code to the GPU, but this
incurred a significant increase in training time due to high
communication latency.

The NTM’s controller was internalized as a PyTorch
LSTM component with a binary cross entropy criterion
(since each output cell essentially represents a binary clas-
sifier) and a root mean square propagation optimizer. The
memory is simply a two-dimensional PyTorch tensor, where
reads and writes consist of matrix multiplications with at-
tentions from the read and write heads. The heads them-
selves are a single linear layer with sigmoid nonlinearity. It
is important to note that the heads do not use a softmax non-

linearity: this helps, for instance, the read head to equally
address multiple cells at once and accumulate the results if
it requires, which was used extensively for the N-gram task
in the original paper [1].

5.2. Classifier

The classifier submodel consists only of pairings of lin-
ear layers, ReLU nonlinearities, and a final softmax. The
softmax is important to allow the architecture to produce a
single normalized matrix after each task NTM calculates
their own matrix. While only one command is supplied
by the user to the programming interpreter at a time, ev-
ery NTM unit is invoked together, and the classifier should
ensure the model properly ignores the NTM units which do
not coincide with the user’s intentions.

Commands are passed to the classifier as lists of inte-
ger embeddings cooresponding to indexes into a predefined
vocabulary. To train the classifier, stochastic gradient de-
scent was used as an optimizer along with a cross entropy
loss criterion. These are the most common combination of
optimizer and criterion, and most recommended in use for
feedforward networks as a “’default” option. The early-stop
tactic specified in algorithm 1 is still used, but the number of
unique training examples is very small so it results in negli-
gible time savings. The most optimal results with respect to
parameter count was found to be one hidden layer of length
128 with a learning rate of 0.1.

5.3. Parser

The parser submodel is based off the LSTM encoder-
decoder specified in [15]. While better, more modern archi-
tectures exist for this task, we wanted to stick to a simpler
model that could be more easily implemented for manual
training. Since the model’s source and target vocabularies
are relatively small (with the output of the parser being a bi-
nary string of fixed length) we attempted to use an identical
feedforward structure to the classifier, the results of which
are detailed in section 6.

Both the encoder and decoder contained a PyTorch em-
bedding layer fed into an LSTM module and dropout,
though the decoder had an additional linear layer to coerce
the LSTM into the correct shape. The optimizer used was
Adam (which is more popular with NLP tasks like sequence
generation) and the criterion was cross entropy loss. The
encoder and decoder both contain 4 LSTM layers each with
a hidden dimension of 512. Additionally, the embedding
dimensions were 512, and the dropout was 0.5. To avoid
exploding gradients typical to recurrent networks, the gra-
dients were clipped prior to stepping forward the optimizer
during each training iteration.

6. Results

Since each component is discrete and trained individu-
ally, this section describes the training and inference results
independently of each other. When combined, the archi-
tectural performance is proportional to the performances of
each component.

6.1. NTM

Table 2 gives, for each task, the loss and number of se-
quences required to train, and the size and layer count of
the associated controller. Each controller was started at a
default controller size and layer count of 100 and 1, respec-
tively. Due to the high training time required to gain ac-
ceptable performance on each model, the early-stopping al-
gorithm depicted in Algorithm 1 was essential to automate
training.

Several of the tasks are expressed as pairs, like add
and sub. Since these pairs have very similar algorithms,
it is natural to assume they would have equivalent layer
counts and controller sizes, but the even and odd tasks
curiously do not exhibit this, as the odd task contains 54x
more parameters than the even task and still contains much
worse performance, shown in 3 to contain volatile vali-
dation losses at times. Besides this, every other task has
less than 0.01 error, with some tasks attaining perfect re-
sults. The early-stopping method employed in this project
demonstrates its benefit again when it comes to the mux task
shown in 4: gradual progress made at different sequence in-
tervals prevented the model from exiting, and the sudden
drop in loss allowed the model to converge much later than
any other task.

Additionally, 5 shows an example of how a task gener-
alizes to inputs of length it hasn’t seen before. For the mux
task, the NTM was trained on sequences between 5 and 20
values in length. The figure shows the model is more than
capable of generalizing to higher sequence lengths in cer-
tain cases while maintaining a low loss. The sudden jumps
in loss are possibly due to algorithmic gaps in the NTM
controller components.

6.2. Classifier

The classifier demonstrated good performance with re-
spect to its size, with its history shown in 6. Due to the
tiny dataset size, its fair to assume the model memorized
the dataset. Although, the validation and training losses
interestingly never met to the same point despite coming
from the same datasets. As mentioned previously, it was at-
tempted to use ascii character embeddings for input strings
rather than indexes into an arbitrarily-defined vocabulary
string, but this never managed to converge regardless of
model size. This is expected, as neural networks tend to per-
form better when inputs are closer to 0, and ascii alphanu-
meric characters are much higher than vocabulary indexes.

Task Loss Sequences Parameters Controller Size Controller Layers
add 0.00004 22000 62860 100 1
sub 0.00068 17000 62860 100 1
and 0.00978 36000 18121860 800 4
or 0.00000 20000 808260 250 2
even 0.00065 50000 62460 100 1
odd 0.65477 30000 3297060 400 3
inv 0.00032 22000 62460 100 1
mux 0.00000 73000 62860 100 1
head 0.00002 26000 62860 100 1
tail 0.00003 26000 527460 200 2

Table 2. Training results for each task. Gives the loss from a single training example, the number of sequences it took to train the model to
become optimal, the number of parameters, the size of the controller component, and the number of layers within the controller. Each task
began with a controller size and layer count of 100 and 1, respectively. By following algorithm 1, each task was trained to continuously
increment their size and layer count until they could not improve any further.

15000

Figure 3. Training history for the mux task.

T T T T T
30000 70000

Figure 4. Training history for the mux task.

6.3. Parser

At a glance, the parser training history shown in 7
achieved results closer to what was expected for the classi-
fier: the validation and training losses come from the same

10 20 30 40 50 60 70

Figure 5. Generalizing to long inputs for the mux task

dataset, so they converge to the same point. Although, the
accuracy of the model never reached a perfect score like the
classifier, meaning that some bits in the outputted binary
sequence were incorrect in some way.

On closer inspection, this appears to be a foundational
failure of the encoder-decoder: since the vocabulary con-
sists only of two output tokens (0 and 17), swapping the
order of some tokens or misplacing a token would result in
a small performance drop in a real language model, but it
should result in very poor performance for a model meant
to act as an interface to a programming language meant to
be axiomatically sound. The parser architecture used in this
paper was adopted from [15], which originally used it in
the task of English to German caption translations. Under-
standably, swapping a noun and a verb in English may result
in a grammatically-incorrect but still-readable translation,
but swapping two adjacent bits in a binary string would re-
sult in an entirely-new binary string. Therefore, future work
should use a different parser with possibly a different crite-

—— train loss
—— wvalid loss
— accuracy

Figure 6. Training history for the classifier.

1 M\/\

—— train loss
0.4 1 —— valid loss
—— accuracy

Figure 7. Training history for the parser.

rion to encourage the model to keep binary values in their
correct orders. Regardless, the model achieves a high per-
formance of 73%, considering its a language model trained
on converting decimal digits into binary masks.

7. Conclusion

This paper proposed a new programming language in-
terface built entirely from neural turing machines, encoder-
decoders, and feedforward networks. Each network was
trained individually and combined to yield a functional lan-
guage of 10 instructions. While the model does fail to yield
the correct output in some cases due to an incorrect pars-
ing of binary strings from a user-inputted command, an im-
proper attention from the classifier, or an incorrect output
matrix generated from an NTM unit, the model produces
correct matrices in most cases. Future work should expand
on this concept to make the architecture fully-differentiable,
and different submodels like a transformer for the parser
and NTM controller should be experimented with to possi-
bly observe better performance.

References

[1] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing
machines. CoRR, 1410.5401, 2014. 1,2, 3,5, 6
[2] Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: an introduction. The MIT Press. 2014. 2
[3] Hava T. Siegelmann and Eduardo D. Sontag. On the compu-
tational power of neural nets. Journal of computer and sys-
tem sciences, 50(1):132-150, 1992. 2
[4] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735-1780, 1997. 2
[5] John von Neumann. First draft of a report on the edvac. 1945.
2
[6] Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever.
Neural random-access machines. ERCIM News. 2015. 2
[7] Wojciech Zaremba and Ilya Sutskever. Reinforcement learn-
ing neural turing machines. arXiv. 2016. 2
[8] Rasmus B. Greve and Emil J. Jacobsen. Evolving neural
turing machines for reward-based learning. GECCO, pages
117-124, 2016. 2
[9] Greg Yang and Alexander M. Rush. Lie-access neural turing
machines. CoRR, 1611.02854, 2016. 2
[10] Alex Graves and Greg Wayne et. al. Hybrid computing us-
ing a neural network with dynamic external memory. Nature,
538:471-476, 2016. 2
[11] Caglar Gulcehre, Sarath Chandar, Kyunghyun Cho, and
Yoshua Bengio. Dynamic neural turing machine with soft
and hard addressing schemes. arXiv. 2016. 2
[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press. 2016. 2
[13] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. Confer-
ence on Empirical Methods in Natural Language Processing.
2014. 2
[14] Yoshua Bengio, Jérome Louradour, Jonan Collobert, and Ja-
son Weston. Curriculum learning. Association for Comput-
ing Machinery, pages 41-48. 2009. 2
[15] Tlya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to
Sequence Learning with Neural Networks. Advances in neu-
ral information processing systems, 27. 2014. 3, 6,7
[16] Guy Zana, Jules Gagnon-Marchand, and Mark
Goldstein. Pytorch neural turing machine. GitHub,
https://github.com/loudinthecloud/pytorch-ntm. 5

	. Introduction
	. Related Work
	. Architecture Overview
	. Datasets and Metrics
	. NTM Tasks
	. NTM Controller
	. Metrics

	. Implementation
	. NTM
	. Classifier
	. Parser

	. Results
	. NTM
	. Classifier
	. Parser

	. Conclusion

