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Abstract—The study of cellular automata is an interesting topic
in the research of complex emergent systems stemming from
simple formal rule sets. In these areas, a small list of rules applied
to a grid of cells can create structured objects, chaotic systems
with unpredictable behavior, and even entire programs built from
discrete logic gates. Cellular automata were an integral field of
research in the development of computational theory, and is still
an expanding topic found in areas like the Journal of Cellular
Automata.

The most popular form of cellular automata is Conway’s Game
of Life which defines the situations in which cells on a two-
dimensional grid are enabled or disabled based on the state of
neighboring cells. Different variations of this simple rule set are
named life-like automata. While there are a large number of
different rule sets, only a few of them have been studied in any
detail. This paper will define a collection of variables present in
grid-based automata and will use tools from empirical analysis to
quantitatively describe correlations, causations, and similarities
between the 11 most popular variations.

Index Terms—Cellular automata, emergent systems, chaos
theory, empirical analysis

I. INTRODUCTION

The concept of emergent systems has wide implications
ranging from physics and chemistry to mathematical domains
like complexity theory and chaos theory. The core idea is that
simplistic, rule-based “axioms” that cannot be decomposed
into any sub-concepts can form the basis of tremendously
complex systems with wide variability and context-sensitivity.
This is most easily seen in the context of subatomic parti-
cles, in which seemingly-simple rules define the position and
momentum of quanta lead to the physical world that humans
inhabit. Researchers can utilize these same concepts to build
new systems with simple rules that can form the foundation
of dynamic and expansive structures.

Cellular automata are a field of research that represents the
core elements of these systems. An automata is a logic device
consisting of states and transitions, in which the transitions
define how one state can become another state. The most
important kind of automata is the Turing machine [1], [2],
which has been used as a tool to define the computability
of algorithmic problems in terms of a formal system. The
Turing machine gives an initial state, a list of steps to perform,
and memory in the form of a linear “tape”, and has been
proven to be capable of represent any computable problem.
Since its original definition in 1936, it has since been used as

Fig. 1. A grid configuration of enabled (white) and disabled (black) cells that
yields a “gun” producing one “glider” every 30 time steps.

a minimum-power system that other computing devices like
modern hardware computers must be defined in terms of in
order to prove their ability to solve problems.

Cellular automata extend this idea by representing each
“cell” in a system as an independent automaton. The most
popular form of cellular automata is Conway’s Game of Life
[3[l, [4]] which defines the system in terms of a two-dimensional
grid with only two possible states—enabled and disabled—
where the state of a cell at the next time step is determined by
(1) its state at the current time step, and (2) the current state
of the eight surrounding cells in the cardinal and intermediate
directions. The rules of the system can be defined as follows:

1) A cell which is currently disabled will become enabled
at the next time step if there are exactly 3 enabled
neighboring cells.

2) A cell which is currently enabled will become disabled
at the next time step if there are not exactly 2 or 3
enabled neighboring cells.

The rules can be summarized with a concise syntax as
“B3S23”, or “Birth with 3 neighbors, Survival with 2 or 3
neighbors”.

While these rules may appear to be simple, they lead to a
huge amount of complexity in the form of abstraction from
emergent systems, where high-level structures appear from
repeated patterns in the cell state. An example of this is the
“glider gun” shown in figure [I] a structure that creates an
infinite number of sub-structures at regular intervals that move
across the grid on their own. The regular pattern of the input
state leads to cells being activated and deactivated in such a
way that causes an “object” to traverse the environment. This
object could interact with others in future time steps in new
and strange ways, bringing about more objects with higher



levels of abstraction. An example of these increasing levels
of abstraction is shown in a universal Turing machine [5],
in which gliders combine with “stoppers” and “reflectors” to
form logic gates, which can construct a finite state machine,
which supplies input with a stack, which is proven to be
capable of solving any computational problem.

While Conway’s Game of Life is the most well-known
cellular automata, there are a number of variations on the rule
set B3S23 that are shown to have similar properties. Rule sets
which are based off of Life are known as life-like cellular
automata, and can be expressed with the same syntax as
before. Examples of this include “34 Life” (B34S34), “High-
Life” (B36S23), and “Day & Night” (B3678S34678). Different
aspects of these automata have already been studied including
their tendency to quickly explode in complexity, form well-
defined meta-structures, or interact to simulate events.

This paper will analyze these life-like cellular automata for
a number of variables and attempt to find similarities between
these variables by using methods in empirical analysis. We
define five such variables that are of interest to us:

e Count: the number of enabled cells in the grid.

e Area: the area of the bounding box containing all points
on the grid.

e Density: the count divided by the area of the grid.

e Entropy: the number of cells that are different between
the previous state and the current state.

e Clumpiness: the average smallest distance between
each enabled cell, in which a low value means values
are clumped very closely together with few cells isolated
with no close neighbors.

We create a robust simulator that is capable of quickly running
individual tests of a rule set and writing the results of these
variables to a log file which a separate program can parse
and create graphs to visualize the output of. We design the
programs such that users can easily replicate the results from
our study with a simple set of commands.

We will first analyze these variables in different simulations
of the automata and then determine if patterns exist between
each variable by utilizing tools such as linear regression,
resampling, cross validation, and t-test. The paper is organized
as follows: section [lI] gives additional background to the field
of cellular automata; section describes how the data set we
analyze is generated; section gives an overview of each
component part of our project; section V| outlines how each
portion of the project was implemented; section provides
the results of the different experiments and analyzes the data
and draws conclusions from any patterns we find; and section
concludes the paper by detailing the work completed.

II. RELATED WORK (BACKGROUND)

The foundation of cellular automata has its roots in John
von Neumann’s research into self-replicating machines. The
von Neumann cellular automaton was the first in the field,
representing a positional rule-based system with independent
“nodes” connected regularly to other nodes. In this design,

there are three possible states and individual nodes are con-
nected only in the cardinal directions; other automata which
posses four-neighbor cardinal connections are thus said to
have von Neumann neighborhoods. von Neumann was par-
ticularly interested in the relation between artificial discrete
automata and the human neurological system where individual
neurons are seen as switches that convey “all or nothing”
information with varying degrees of high-level complexity [|6].
von Neumann showed how a “universal constructor” could be
designed that is capable of creating a machine according to
some description, which is able to conceptualize biological
genetics as a self-replicating machine [/7].

Conway’s Game of Life was proposed by John Conway
and published in the October 1970 issue of Scientific Ameri-
can’s Mathematical Games column written by Marin Gardner
[4], which gives the ruleset of the game and various basic
structures that are destroyed after some duration of time steps
or repeat with a specific period. Shortly after in November,
William Gosper submitted a design to the column containing a
finite pattern of cells that yield an infinitely-growing pattern of
enabled cells travelling in some direction down the grid. This
led to the creation of another newsletter specifically aimed
towards cellular automata named LIFELINE.

Since then, there have been a large amount of research (even
in recent years) that study these systems and use their con-
ceptual frameworks to design real-world physical and logical
processes like text encryption [8]], image processing [9]], and
traffic flow models [10]. Additional resources include A New
Kind of Science by Stephen Wolfram [[11]] which describes the
wide breadth that simplistic cellular automata have in diverse
real-world domains, and the Journal of Cellular Automata
which has published yearly volumes since 2006 continuing
into the present day (2023).

III. DATASET

This project consists of simulations run on a collection of
11 life-like cellular automata and a subsequent analysis of the
resulting data. Due to the simple rules used to produce the data,
a program can be created which executes different simulations
and writes their important variables to a file. For our project,
data collection is performed by initializing a configuration
with a two-dimensional grid size and an initial seed, and
the simulation is allowed to execute until some time limit is
reached. The seed is able to be provided randomly (which
gives a random configuration of enabled and disabled cells)
or with an inputted number (which can be used as a bit-mask
to selectively enable some cells).

IV. DETAILED DESIGN OF FEATURES

This section describes a high-level overview of each com-
ponent of the project and the goals each component seeks to
achieve. There are two main elements that compose our design
which will be discussed including the simulator and the parser.



A. Simulator

The simulator seeks to run a configuration for a cellular au-
tomaton given its rule set, grid size, execution count, and max
duration allowed. It executes each iteration of the simulation,
collecting the variables mentioned in section [I] and appending
them to a log file. Each variable can be collected by measuring
only the (1) state of each cell and (2) the position of each
enabled cell on the grid, which can be performed with simple
binary logic operations.

An important aspect of the simulator is the optional GIF
creator that displays each state of a single simulation. Grids
of enabled and disabled states can be interpreted as images
of black and white pixels, and these images can be combined
to form animated GIFs. This is helpful to visually see the
implications of variable values; for example, the “Replicator”
rule set has the highest entropy out of any of the 11 rule sets,
but this is not immediately apparent when the rule description
is shown (B1357S1357). Although, after viewing the generated
GIF, we can see that the simulation given after using a
randomly-generated initial state has a quick growth that fills
the entire board and has nearly every cell blink between off
and on states. In fact, viewing multiple GIFs shows that this
particular rule set has the effect of replicating and expanding
any initial state it is given

B. Parser

The parser is a tool to both (1) manage the automatic execu-
tion of the simulator to collect data and (2) read the collected
data and analyze it with figures and statistical models. It is
able to read multiple log files at once to compare the different
variables with multi-dataset graphs, which are each given in
section The specific graphs that it supports are multi-
boxplot comparisons, correlation heatmaps (with Pearson’s co-
efficient), linear regression (with calculation of an R? and root
mean-squared error metric), multi-histogram comparison with
inclusion of a confidence interval of a statistic, and density
graph. Additionally, operations on datasets are supported like
removal of outliers, averaging of statistics, and bootstrapping.

V. IMPLEMENTATION

The simulator and the parser both have different needs that
must be addressed, which makes their execution environments
very different from each other. This section describes these
execution environments as well as the specific implementation
details that are important to know in order to understand how
they operate.

A. Simulator

First, the simulator required high performance and fixed-
width data types so that many different simulations could be
run in a short amount of time so that the highest amount of
data could be collected and analyzed; we will see in section
that approximating a normal distribution of the variables
is important and only possible if lots of data is collected.

'GIFs of each of the 11 rule sets can be viewed at
https://youtu.be/jJTz- WpF_ZQ?si=evZDG2G40A0dzmq9

Fig. 2. An example of two identical initial states despite being located at
different positions on the grid (relative to the red dot).
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Fig. 3. Graphical demonstration of the state normalization process. The shapes
represent enabled cells, with blue squares being the initial state and red circles
being the normalized state. Here, the grid is 3 X 3 cells large, and the resulting
hash value is a 9-bit value.

The simplicity of the simulator meant that most of it could
be designed in basic C with a few exceptions. Primarily,
the GIF-creation capability was an integral part of the data-
visualization process and necessary to properly understand
how the variables should be interpreted, and a helpful minimal-
size library was found that easily creates a GIF from a color
(integer) bufferﬂ

The other library that was required was an implementation
of a hash-set data structure in CP| Cellular automatas have
an interesting property that their next state depends entirely
on their current state: in other words, if two separate grid
configurations reduce to the same initial state, then we can
guarantee they will generate the same variables at every time
step. An example of this is shown in figure [2] in which one
initial grid configuration is exactly the same as another, but
with a different position relative to a reference point. This
shows how two states can be the same while having different
grid values. Since cellular automata can be infinite-size in
theory, it would be disingenuous to consider the two grid
configurations as separate data points, so we need a method of
hashing a state into a value that can be compared with another
hash to determine equality.

The way this is determined is with bit-shifting rules shown
in figure [3] In our design, the simulation grid is implemented
as an array of bits (or, more exactly, an array of bytes that
individual bits are extracted from) in row-major order, in
which the most-significant bit is the lower-right cell in the
grid and the least-significant bit is the top-left cell in the grid.
In order to determine a hash for a state, the following steps
are executed:

Zhttps://github.com/lecram/gifenc
3https://github.com/avsej/hashset.c
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Fig. 4. An example of a grid with a clumpiness very close to (but not exactly
equal to) 1.000.

1) A bit array is formed as a copy of the given state. The
bit-array represents a row-major grid of cells.

2) A bounding box is created that surrounds each enabled
bit of the entire structure. The width of this box is b,,
and the height is by,.

3) The cells are moved as far left as possible in the grid.
We get the horizontal position of the leftmost cell in
the structure by dividing the bit array into groups of b,,
cells each, and finding the bit value that is furthest to
the right in each group. Then, the leftmost position is
the minimum value out of the positions of the rightmost
enabled bit in each group. We right-shift the number by
this amount.

4) The cells are moved as far up as possible in the grid.
We repeat the above steps: we divide the bit array into
groups of by, cells each, in which the least-significant
group is position 0, the next least-significant group is
position 1, etc. Finally, we right-shift the number by
by, X position bits.

5) The resulting bit array is the hash value.

Each run of the simulator may execute many dozens or
hundreds of simulations. To prevent repeated data from being
logged, we create a hash value according to the steps shown
above and compare it with values already logged previously.
If the hash-set already contains the hash-value, then the
simulation is skipped; otherwise, it continues and its hash-
value is added to the hash-set.

Each of the five variables stated in section [I| can be easily
implemented by calculating bounding boxes and counting
enabled bits. The simulation is double-buffered so both the
current state and the previous state are stored for the purposes
of finding the entropy of the simulation. The only variable
which is not entirely intuitive is the clumpiness: this is found
by finding the minimum distance from a point p; to any point
p2. An example of this is shown in figure {] in which almost
every enabled cell in the grid is a neighbor with another cell.
Although, there is one cell in the bottom-left corner which
has no immediate neighbors, with its closest neighbor being
3 cells away in the diagonal direction. Since there are 73

enabled cells on the grid, this would lead to a clumpiness

of WXL g7,

Finally, the log files need to store each of the five variables
for each simulation so the parser can create graphs from it.
These log files take the following format shown in figure
Bl The constant NUM_TITERATIONS is shared between the

simulations: uint64
Repeat simulations times:
seed: uint64
clumpiness: double
count: uint64
Repeat NUM_ITERATIONS times:
area: uint64
entropy: uint64
density: double

O 00 J o U WN K

Fig. 5. File structure of simulation logs. All values are 8-bytes long and
are determined by the automata rules being applied to the seed (except for
NUM_ITERATIONS, which is a global constant value).

simulator and the parser so it does not need to be stored, but
all other values are generated by the simulator itself.

For this project, we interpret the variables clumpiness
and count as independent variables measured only in the
initial state of a simulation, while area, entropy, and
density are dependent variables that are measured each time
stepﬂ We will attempt to predict these dependent variables by
using the independent variables in section

B. Parser

While the simulator required high performance and a precise
design, the parser could afford to be slower and more abstract,
but it had a requirement of being easier to program in to
encourage quick prototyping of data analysis tools. The parser
would be used to generate figures describing the data—along
with managing the execution of the simulator if those log files
do not exist at parse-time—so it should only need to be run
once as opposed to the simulator which would run potentially
millions of times. In addition, the parser requires lots of
external libraries to be included featuring data-processing and
statistical libraries. All of these qualities combine to make
Python an ideal fit for this program.

The most important part of the parser is the ability to
generate figures from the simulation logs. The logs are parsed
using the same format described in figure |5/ and converted into
lists of numbers, but the popular libraries matplotlib and
seaborn are used to visualize the data with graphics (box
plots, heatmaps, scatter plots, histograms, and density plots),
and scipy and sklearn are used to simplify the implemen-
tation of statistical tools (T-tests and linear regression).

Each rule set and human-readable name (e.g.,
”B3S012345678” and “Life without Death”) for the 11
life-like automatas are included directly in the file next
to execution flags, so the user can easily configure their
execution environment to generate the types of data they
require.

4The decision to choose this division of independent/dependent variables
was arbitrary. Future work can see if interesting effects arise from a new
division.



VI. RESULTS AND ANALYSIS

This section will describe the results received after running
the project. The same results shown in this paper can be easily
received by running the command python3 parse.py,
which will queue up each simulation, GIF-creator, log-
generator, and data-parser to generate the same figures shown
here. Every simulation will run for 32 iterations with 65536
simulations executed per rule set (with duplicate configura-
tions removed as described in section [V]) in a grid size of
48 x 48 cells. Each rule set was run two times: once with
randomized seeds (ranging from 0 to 2'6%16) and once with
seeds incrementing from 0 to 65536.

A. Random Large Seeds

First, we will compare the averages of the three main
statistics (area, entropy, and density) between the different rule
sets. These logs were generated from random seeds, so the
count had the potential to range from O to 16 x 16 — 1, the
clumpiness from 0.00 to 15.00, the area from O to 1, the
entropy from 0 to 16 x 16 —1, and the density from 0.00
to 1.00. The results are shown in figure [6]

Immediately, we can notice several obvious correlations
between the statistic averages and the visual representations
shown in GIFs of the rule sets. For starters, Replicator
(B1357S1357) has the highest area and entropy, which is
apparent due to its tendency to rapidly fill the entire grid and
its quick blinking due to having a birth and survival neighbor
count equal to each other (B = S = 1357). Alternatively,
Anneal (B4678S535678) has the smallest entropy with a widely
inconsistent (but still very low on average) area, due to
it becoming too small and vanishing very quickly. In our
environment, we consider a simulation which ends early—
before the entire 32 time steps are complete—to contain O-
padded values for the area, entropy, and density, which would
reduce the averages considerably if one rule set tended to end
very quickly. As such, we would likely see different results
for Anneal if the iteration size was smaller than 32. Anneal
does have the highest average density though due to the fact
cells stay alive with a large number of neighbors (B = 4678,
S = 35678), unlike most other rule sets which experience
an “overpopulation” effect where they die with too many
neighbors (e.g., Life with the rule set B3S23).

Next, we can see how the initial starting state variables
count and clumpiness correlates with the average area,
entropy, and density for a specific execution of a sim-
ulation. This step is extremely dependent on the maximum
number of simulated time steps since it favors rule sets which
feature “stagnation” and an overall consistent and predictable
population more than they do chaotic systems that change very
frequently. This is shown in figure

The correlation graphs initially show promising data for
predicting average qualities from an initial value. The cor-
relation values are calculated from a Pearson’s coefficient
describing the correlation between two lists of equal-size data,
in which +1 indicates a positive correlation, —1 indicates
a negative correlation, and 0 indicates no correlation. In

Average area over 32 iterations for 65536 executions
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Fig. 6. The average area, entropy, and density for random initial starting
states in each of the 11 rule sets.

particular, Diamoeba (B35678S5678) has average area nega-
tively correlate with initial simulation count, and Replicator
(B1357S1357) has average density positively correlate with
count as well. Clumpiness does not share this same pre-
dictability for any statistic likely due to the fact it is a chaotic
statistic that is likely to change almost immediately in even
the next iteration of the simulation. In fact, clumpiness should
probably be used in predicting short-term statistics rather than
long-term ones like those used in this paper. We can plot a
linear regression model from the datasets used previously (e.g.,
relating initial count and average entropy for Diamoeba,
and initial count and average density for Replicator),
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Fig. 7. The correlation between the initial count and clumpiness with the
average area, entropy, and density.

shown in figure

The model is created from a train-test split of 67%/33% and
evaluated with an R? and root mean-squared error RMSE
metric obtained from comparing the fit of the line to the
training data and testing data, respectively. We find that
Diamoeba has an R? = 0.463 and an RM SE = 7.522, while
Replicator has an R? = 0.436 and an RM SE = 0.0054. Both
R? values fit moderately well to the data (and, as can be seen,
they adequately capture a clear trend of the plot points), so
we can be capable of utilizing this linear regression plot to
estimate stats of the data given the initial state.

Although, we can see how much of an effect outliers have
on the dataset by repeating the previous three figure sets
with outliers removed. In our case, we have three dependent
variables (area, entropy, and density) and two inde-
pendent variables (count and clumpiness) so we interpret
an “outlier” to be a single dependent variable which is more
than one standard deviations away from the mean for a given
statistic. The point is only added to the reduced dataset if
all three dependent variables pass this test. The new average
statistics are depicted in figure

The biggest difference between figure [ and figure [f] is
the variability in the data. The upper and lower quartiles in
the box plot are significantly more compressed around the
mean, except for the average area and density of Diamoeba
(B3567855678) and Anneal (B4678S35678), which still ex-

Linear regression between initial count and average entropy
for "Diamoeba (B3567855678)" with R~2 = 0.4632 and RMSE = 7.5215
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Fig. 8. Linear regression modelling between the two most correlated statistics
shown in figure [7}

perience relatively large variability likely due to the wide
distribution of values in figure [6]

Figure [10| repeats the correlation comparison between each
independent and dependent variable. It is clear that the re-
moval of outliers in the dataset reduced the overall correlation
between each variable, with Pearson’s coefficient dampening
closer to zero in all cases. We can compare the same two
variables we did previously in the linear regression test next.

Linear regression shown in figure shows a reduced R?
score, but an improved RM SFE metric in both cases. This
means the ability of linear regression to fit to training data
deteriorated, but its predictive ability to generalize to unseen
data has improved. This is arguably a more important metric to
optimize, so removing outliers can be seen to have a positive
effect on the model.

B. Incremental Small Seeds

As opposed to the previous section, this section will run
simulations on an exhaustive search of the initial starting states
from O (no enabled cells on the grid) to 26 (a 4 x 4 grid of
enabled cells). Ideally, we would use a much larger initial
grid size, but this becomes extremely expensive and infeasible
to run. Our goal in this section is to see how well we can
generalize small initial states to large states, and how well two
rule sets compare when their exact input states are equivalent
as opposed to the previous section which had very different
starting states in each simulation run.

Figure[12] shows a comparison between each of the indepen-
dent variables, as we have shown previously for the random
(figure[6) and random-no-outlier (figure 9 datasets. This time,
we can observe new curious artifacts emerge from the data.



Average area (outliers removed) over 32 iterations for 21545 executions
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Average density (outliers removed) over 32 iterations for 21545 executions
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Fig. 9. The average area, entropy, and density for random initial starting
states but with outlier values removed.

In particular, we can see that the variation in the area for
each rule set increased compared to the random initial states.
This may indicate that area is highly dependent on the number
of enabled cells, especially for a small-duration limited-size
grid like the one shown in our simulator. Despite this, entropy
remains almost the same as before. This is probably due to the
fact the change in cell state is consistent regardless the size
of the grid; most grid configurations will have very similar
changes in their cell status.

Next, we take a look more closely at the Life (B3S23) and
HighLife (B36S23) rule sets to observe how they differ from
each other. We can see that the three variables shown in figure

Correlation between statistical averages and
initial simulation size (outliers removed)
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Fig. 10. The correlation between the initial count and clumpiness (inde-

pendent variables) with the average area, entropy, and density (dependent
variables), where outlier dependent variables are removed from the correlation
test.

Linear regression between initial count and average entropy
for "Di&moeba (B3567855678)" with R"2 = 0.2086 and RMSE = 4.1249 (no outliers)
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statistics shown in ﬁgure with outliers removed from the original dataset.



Average area (exhaustive) over 32 iterations for 57872 executions

H H T %
__2000 ° — T : T
T o o [ ‘
2 o o .
I ° °
3 1500 o
£
3 T
©
@ 1000
©
[
Iy 4
5 500 8
E - :
=3
0 + . i .
‘_‘r\ ry £ ‘= 0% © n Q'm = ® o) ‘@
58 88 Fe ed 5B 8% o8 33 E5 oy _&
ol Yo aw Om 3 ol X0 <o =< - © 10
gh 27 Lo e Fp 8@ S¢ =g Sa Bg 8o
§n R gp o % Zp =g £8
o £3 an T © ©
[+a] ZT o m am <
20 o o o
oM
[2a]
5
Simulation ruleset
Average entropy (exhaustive) over 32 iterations for 57872 executions
v 500 j;
2
=1
3
T 400
<
%
L
> 300
Q 8
2 o
$ 200
[
g
5 100
< .i. =
0 ° —_— :;: i =i; = i - .
~ v = © Q «© @
-1 = oR  £X o~ Q £ 28 .9 ~
Sm P o~ =% Ju 8o N 20 o0 o —_©
o [} aw© Om s o0 x 0 <o = —-un © 10
ov 2] Sn o s 8a No om 23 53 gm
S0 ERS ER @ T® 35 =@ EQ
o m ~ T © > ) <
£ S awn T o ©
o S O m om <
2 q o o [ra)
o ™M
o
?‘j

Simulation ruleset

Average density (exhaustive) over 32 iterations for 57872 executions

® ° B '
5

=
o

o
©

S 2
-}

—H_m
Hjom o coe =
(=

Average density (exhaustive)
o
o
o o000 o ooo*—{ }—4—

°
=)

Replicator
B135751357
Seeds
B2S
Life without Death
B35012345678
Life
B3S23
34 Life
B34S34
Diamoeba
B3567855678
2x2
B365125
HighLife
B36523
Day & Night
B3678534678
Morley
B3685245
Anneal
B4678535678

Simulation ruleset

Fig. 12. The average area, entropy, and density for regular initial starting
states.

@] have values that are nearly identical to each other, so we
can create a hypothesis that the two rule sets do not differ
in their area, entropy, and density, at least for the
given simulator configuration. Framing the problem in this
way allows us to perform a t-test on each individual statistic;
if all three t-tests value p-values greater than 0.05 then we fail
to reject the null hypothesis, meaning we are unable to tell if
the points came from the same population (or rather, we are
not confident that the three variables are significantly different
based only on the rule set). The results of these tests and a
comparison of the values is given in figure [13]

From this figure, we can tell that the data distributions are

Comparison between average area for life/highlife: £(-27.6581), p(0.0)
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Fig. 13. Comparison between the average area, entropy, and density for life
(B3S23) and HighLife (B36S23).

both very similar to each other. The overall shapes of the
distributions are nearly identical, but the p-values in each case
is very close to 0.000. This means that despite the similarity
between the datasets and the closeness in their shapes, a
statistical model would still clearly consider them coming from
different populations. As such, we reject the null hypothesis.

The final figure to display is a prediction of the 95%
confidence interval of a dataset. In our case, we chose to
predict the mean of life (B3S23). Ideally, the exhaustive search
of the statistics will generalize to larger dataset sizes with more
randomization, which is tested in the next set of figures. The
distribution of area values for an exhaustive search of small
initial seeds is given in figure [I4]

Clearly, small seed values lead to a very large variance
in values. The mean area is at around 500, but the 95%
confidence interval is approximately in the range [0, 2200].
This could indicate a small dataset size, but it is not overall
very helpful in narrowing the search for the true population
mean.

Bootstrapping is a helpful technique which can possibly
assist us in this goal. With bootstrapping, we repeatedly create
sub-samples with replacement from the sample shown in figure
[14] then create a new confidence interval for the mean area
based on it. This distribution is very likely to contain areas



Distribution of areas for exhaustive search of the
Life (B3523) automaton

Mean

0.0025¢ \ 95% confidence interval
=
o
£ 0.0020
2
©0.0015
z
z
% 0.0010
2
O
s}

0.0005

N
0.0000
500 1000 1500 2000 2500

Average area

Fig. 14. 95% confidence intervals for the mean of the regular life (B3523)
automaton areas.
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Fig. 15. 95% confidence intervals for the mean of the bootstrapped regular
life (B3S23) automaton areas.

close to the grand mean in the original sample, but it should
have a variance that somewhat reflects the hidden distribution
representing the population. The bootstrapped mean distribu-
tion is given in figure T3] The fact this distribution makes a
normal-looking curve is promising.

The sample we want to predict the mean of is given in figure
[I6] representing the average areas of a simulation initialized
with a random seed value. Although, we can compare the true
mean of that distribution with the 95% confidence generated
in figure T3] and see that they are very different from each
other. This most likely indicates that the overall tiny range
of initialization values from the exhaustive search (between
0 and 24*4) is still far too incapable of predicting the same
kind of information shown in the initialization with random
seed values (between 0 and 21616, This does not mean that
bootstrapping is an unreliable technique, nor does it imply that

Distribution of areas for random search of the
Life (B3523) automaton
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Fig. 16. Distribution of the random life (B3S23) automaton areas with the
95% confidence intervals from figure E

the variables are completely uncorrelated, but rather that more
information should be gathered from a wider distribution of
data before it should be used as a predictive tool.

VII. PROJECT MANAGEMENT

This project (besides the gifenc, hashset.c, and
Python statistical libraries included in the source code or
project directory) was implemented entirely by Justin Garri-
gus. Source code can be found at
https://github.com/justinmgarrigus/empirical-analysis.git.
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